Cite
In silico dynamics of COVID-19 phenotypes for optimizing clinical management.
MLA
Voutouri, Chrysovalantis, et al. “In Silico Dynamics of COVID-19 Phenotypes for Optimizing Clinical Management.” Proceedings of the National Academy of Sciences of the United States of America, vol. 118, no. 3, Jan. 2021. EBSCOhost, https://doi.org/10.1073/pnas.2021642118.
APA
Voutouri, C., Nikmaneshi, M. R., Hardin, C. C., Patel, A. B., Verma, A., Khandekar, M. J., Dutta, S., Stylianopoulos, T., Munn, L. L., & Jain, R. K. (2021). In silico dynamics of COVID-19 phenotypes for optimizing clinical management. Proceedings of the National Academy of Sciences of the United States of America, 118(3). https://doi.org/10.1073/pnas.2021642118
Chicago
Voutouri, Chrysovalantis, Mohammad Reza Nikmaneshi, C Corey Hardin, Ankit B Patel, Ashish Verma, Melin J Khandekar, Sayon Dutta, Triantafyllos Stylianopoulos, Lance L Munn, and Rakesh K Jain. 2021. “In Silico Dynamics of COVID-19 Phenotypes for Optimizing Clinical Management.” Proceedings of the National Academy of Sciences of the United States of America 118 (3). doi:10.1073/pnas.2021642118.