Back to Search Start Over

SARS-CoV-2 and other human coronaviruses: Mapping of protease recognition sites, antigenic variation of spike protein and their grouping through molecular phylogenetics.

Authors :
Chakraborty C
Sharma AR
Bhattacharya M
Saha RP
Ghosh S
Biswas S
Samanta S
Sharma G
Agoramoorthy G
Lee SS
Source :
Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases [Infect Genet Evol] 2021 Apr; Vol. 89, pp. 104729. Date of Electronic Publication: 2021 Jan 23.
Publication Year :
2021

Abstract

In recent years, a total of seven human pathogenic coronaviruses (HCoVs) strains were identified, i.e., SARS-CoV, SARS-CoV-2, MERS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, and HCoV-HKU1. Here, we performed an analysis of the protease recognition sites and antigenic variation of the S-protein of these HCoVs. We showed tissue-specific expression pattern, functions, and a number of recognition sites of proteases in S-proteins from seven strains of HCoVs. In the case of SARS-CoV-2, we found two new protease recognition sites, each of calpain-2, pepsin-A, and caspase-8, and one new protease recognition site each of caspase-6, caspase-3, and furin. Our antigenic mapping study of the S-protein of these HCoVs showed that the SARS-CoV-2 virus strain has the most potent antigenic epitopes (highest antigenicity score with maximum numbers of epitope regions). Additionally, the other six strains of HCoVs show common antigenic epitopes (both B-cell and T-cell), with low antigenicity scores compared to SARS-CoV-2. We suggest that the molecular evolution of structural proteins of human CoV can be classified, such as (i) HCoV-NL63 and HCoV-229E, (ii) SARS-CoV-2, and SARS-CoV and (iii) HCoV-OC43 and HCoV-HKU1. In conclusion, we can presume that our study might help to prepare the interventions for the possible HCoVs outbreaks in the future.<br /> (Copyright © 2021 Elsevier B.V. All rights reserved.)

Details

Language :
English
ISSN :
1567-7257
Volume :
89
Database :
MEDLINE
Journal :
Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases
Publication Type :
Academic Journal
Accession number :
33497837
Full Text :
https://doi.org/10.1016/j.meegid.2021.104729