Back to Search
Start Over
Evidence of two deeply divergent co-existing mitochondrial genomes in the Tuatara reveals an extremely complex genomic organization.
- Source :
-
Communications biology [Commun Biol] 2021 Jan 29; Vol. 4 (1), pp. 116. Date of Electronic Publication: 2021 Jan 29. - Publication Year :
- 2021
-
Abstract
- Animal mitochondrial genomic polymorphism occurs as low-level mitochondrial heteroplasmy and deeply divergent co-existing molecules. The latter is rare, known only in bivalvian mollusks. Here we show two deeply divergent co-existing mt-genomes in a vertebrate through genomic sequencing of the Tuatara (Sphenodon punctatus), the sole-representative of an ancient reptilian Order. The two molecules, revealed using a combination of short-read and long-read sequencing technologies, differ by 10.4% nucleotide divergence. A single long-read covers an entire mt-molecule for both strands. Phylogenetic analyses suggest a 7-8 million-year divergence between genomes. Contrary to earlier reports, all 37 genes typical of animal mitochondria, with drastic gene rearrangements, are confirmed for both mt-genomes. Also unique to vertebrates, concerted evolution drives three near-identical putative Control Region non-coding blocks. Evidence of positive selection at sites linked to metabolically important transmembrane regions of encoded proteins suggests these two mt-genomes may confer an adaptive advantage for an unusually cold-tolerant reptile.
Details
- Language :
- English
- ISSN :
- 2399-3642
- Volume :
- 4
- Issue :
- 1
- Database :
- MEDLINE
- Journal :
- Communications biology
- Publication Type :
- Academic Journal
- Accession number :
- 33514857
- Full Text :
- https://doi.org/10.1038/s42003-020-01639-0