Back to Search Start Over

The mechanism of the nucleo-sugar selection by multi-subunit RNA polymerases.

Authors :
Mäkinen JJ
Shin Y
Vieras E
Virta P
Metsä-Ketelä M
Murakami KS
Belogurov GA
Source :
Nature communications [Nat Commun] 2021 Feb 04; Vol. 12 (1), pp. 796. Date of Electronic Publication: 2021 Feb 04.
Publication Year :
2021

Abstract

RNA polymerases (RNAPs) synthesize RNA from NTPs, whereas DNA polymerases synthesize DNA from 2'dNTPs. DNA polymerases select against NTPs by using steric gates to exclude the 2'OH, but RNAPs have to employ alternative selection strategies. In single-subunit RNAPs, a conserved Tyr residue discriminates against 2'dNTPs, whereas selectivity mechanisms of multi-subunit RNAPs remain hitherto unknown. Here, we show that a conserved Arg residue uses a two-pronged strategy to select against 2'dNTPs in multi-subunit RNAPs. The conserved Arg interacts with the 2'OH group to promote NTP binding, but selectively inhibits incorporation of 2'dNTPs by interacting with their 3'OH group to favor the catalytically-inert 2'-endo conformation of the deoxyribose moiety. This deformative action is an elegant example of an active selection against a substrate that is a substructure of the correct substrate. Our findings provide important insights into the evolutionary origins of biopolymers and the design of selective inhibitors of viral RNAPs.

Details

Language :
English
ISSN :
2041-1723
Volume :
12
Issue :
1
Database :
MEDLINE
Journal :
Nature communications
Publication Type :
Academic Journal
Accession number :
33542236
Full Text :
https://doi.org/10.1038/s41467-021-21005-w