Back to Search Start Over

TaNAC032 transcription factor regulates lignin-biosynthetic genes to combat Fusarium head blight in wheat.

Authors :
Soni N
Altartouri B
Hegde N
Duggavathi R
Nazarian-Firouzabadi F
Kushalappa AC
Source :
Plant science : an international journal of experimental plant biology [Plant Sci] 2021 Mar; Vol. 304, pp. 110820. Date of Electronic Publication: 2021 Jan 08.
Publication Year :
2021

Abstract

Fusarium head blight (FHB) is a destructive disease affecting cereal crops globally due to mycotoxin contamination of grains that reduce yield and quality. Among hundreds of QTLs identified for resistance, the QTL-Fhb1 is of significant interest even today, for its major contribution to FHB resistance. Previously, QTL-Fhb1 dissection based on a combined metabolo-genomics approach, identified a few potential resistance genes, including a NAC like transcription factor for FHB resistance. Sequencing and phylogenetic analysis confirmed NAC to be the wheat TaNAC032. Also, the quantitative RT-PCR studies revealed a greater induced expression of TaNAC032 in resistant NIL in comparison to susceptible NIL upon Fusarium graminearum (Fg) infection. The virus-induced gene silencing (VIGS) based functional validation of TaNAC032 in resistant NIL confirmed increased disease severity and fungal biomass. Metabolic profiling revealed low abundances of resistance-related (RR) metabolites in TaNAC032 silenced NIL-R compared to non-silenced. Silenced plants showed decreased transcript abundances of RR metabolite biosynthetic genes associated with a reduction in total lignin content in rachis, confirming the regulatory role of TaNAC032 in wheat in response to Fg infection. If TaNA032 is mutated in an FHB susceptible cultivar, it can be edited to enhance FHB resistance.<br /> (Copyright © 2021 Elsevier B.V. All rights reserved.)

Details

Language :
English
ISSN :
1873-2259
Volume :
304
Database :
MEDLINE
Journal :
Plant science : an international journal of experimental plant biology
Publication Type :
Academic Journal
Accession number :
33568310
Full Text :
https://doi.org/10.1016/j.plantsci.2021.110820