Back to Search
Start Over
Ventilation and air cleaning to limit aerosol particle concentrations in a gym during the COVID-19 pandemic.
- Source :
-
Building and environment [Build Environ] 2021 Apr 15; Vol. 193, pp. 107659. Date of Electronic Publication: 2021 Feb 04. - Publication Year :
- 2021
-
Abstract
- SARS-CoV-2 can spread by close contact through large droplet spray and indirect contact via contaminated objects. There is mounting evidence that it can also be transmitted by inhalation of infected saliva aerosol particles. These particles are generated when breathing, talking, laughing, coughing or sneezing. It can be assumed that aerosol particle concentrations should be kept low in order to minimize the potential risk of airborne virus transmission. This paper presents measurements of aerosol particle concentrations in a gym, where saliva aerosol production is pronounced. 35 test persons performed physical exercise and aerosol particle concentrations, CO <subscript>2</subscript> concentrations, air temperature and relative humidity were obtained in the room of 886 m³. A separate test was used to discriminate between human endogenous and exogenous aerosol particles. Aerosol particle removal by mechanical ventilation and mobile air cleaning units was measured. The gym test showed that ventilation with air-change rate ACH = 2.2 h <superscript>-1</superscript> , i.e. 4.5 times the minimum of the Dutch Building Code, was insufficient to stop the significant aerosol concentration rise over 30 min. Air cleaning alone with ACH = 1.39 h <superscript>-1</superscript> had a similar effect as ventilation alone. Simplified mathematical models were engaged to provide further insight into ventilation, air cleaning and deposition. It was shown that combining the above-mentioned ventilation and air cleaning can reduce aerosol particle concentrations with 80 to 90% , depending on aerosol size. This combination of existing ventilation supplemented with air cleaning is energy efficient and can also be applied for other indoor environments.<br />Competing Interests: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (© 2021 The Authors.)
Details
- Language :
- English
- ISSN :
- 0360-1323
- Volume :
- 193
- Database :
- MEDLINE
- Journal :
- Building and environment
- Publication Type :
- Academic Journal
- Accession number :
- 33568882
- Full Text :
- https://doi.org/10.1016/j.buildenv.2021.107659