Back to Search Start Over

Human galectin-1 and galectin-3 promote Tropheryma whipplei infection.

Authors :
Ayona D
Zarza SM
Landemarre L
Roubinet B
Decloquement P
Raoult D
Fournier PE
Desnues B
Source :
Gut microbes [Gut Microbes] 2021 Jan-Dec; Vol. 13 (1), pp. 1-15.
Publication Year :
2021

Abstract

Tropheryma whipplei , is an actinobacterium that causes different infections in humans, including Whipple's disease. The bacterium infects and replicates in macrophages, leading to a Th2-biased immune response. Previous studies have shown that T. whipplei harbors complex surface glycoproteins with evidence of sialylation. However, the exact contribution of these glycoproteins for infection and survival remains obscure. To address this, we characterized the bacterial glycoprofile and evaluated the involvement of human β-galactoside-binding lectins, Galectin-1 (Gal-1) and Galectin-3 (Gal-3) which are highly expressed by macrophages as receptors for bacterial glycans. Tropheryma whipplei glycoproteins harbor different sugars including glucose, mannose, fucose, β-galactose and sialic acid. Mass spectrometry identification revealed that these glycoproteins were membrane- and virulence-associated glycoproteins. Most of these glycoproteins are highly sialylated and N-glycosylated while some of them are rich in poly-N-acetyllactosamine (Poly-LAcNAc) and bind Gal-1 and Gal-3. In vitro, T. whipplei modulates the expression and cellular distribution of Gal-1 and Gal-3. Although both galectins promote T. whipplei infection by enhancing bacterial cell entry, only Gal-3 is required for optimal bacterial uptake. Finally, we found that serum levels of Gal-1 and Gal-3 were altered in patients with T. whipplei infections as compared to healthy individuals, suggesting that galectins are also involved in vivo . Among T. whipplei membrane-associated proteins, poly-LacNAc rich-glycoproteins promote infection through interaction with galectins. T. whipplei modulates the expression of Gal-1 and Gal-3 both in vitro and in vivo . Drugs interfering with galectin-glycan interactions may provide new avenues for the treatment and diagnosis of T. whipplei infections.

Details

Language :
English
ISSN :
1949-0984
Volume :
13
Issue :
1
Database :
MEDLINE
Journal :
Gut microbes
Publication Type :
Academic Journal
Accession number :
33573443
Full Text :
https://doi.org/10.1080/19490976.2021.1884515