Back to Search Start Over

In silico analyses of toxicity of the major constituents of essential oils from two Ipomoea L. species.

Authors :
da Silva Júnior OS
Franco CJP
de Moraes AAB
Cruz JN
da Costa KS
do Nascimento LD
Andrade EHA
Source :
Toxicon : official journal of the International Society on Toxinology [Toxicon] 2021 May; Vol. 195, pp. 111-118. Date of Electronic Publication: 2021 Mar 02.
Publication Year :
2021

Abstract

Convolvulaceae Juss. is a family of vines and shrubs composed of species of ecological and economic importance. Ipomoea asarifolia (Desr.) Roem. & Schult. and I. setifera Poir. are ruderal and evergreen weeds that invade pastures and cause intoxication in cattle during the dry season. In the present study, the essential oils (EOs) of the leaves from I. setifera (dry season) and I. asarifolia (dry and wet seasons) were obtained by steam distillation for 3h. The chemical composition of the EOs was determined using gas chromatography coupled to gas spectrometry (CG/MS) and gas chromatography with flame ionization detector (CG-FID). To correlate the toxicity of the major chemical constituents of I. setifera and I. asarifolia EOs, we predicted the inhibition activity against the cytochrome P450 (CYP450) and P-glycoprotein 1 (P-gp) using a machine learning-based (ML-based) algorithm. In silico analyses were also applied to evaluate the pharmacokinetics properties related to the penetration in the blood-brain barrier (BBB) and gastrointestinal absorption. The chemical composition of the EO of I. setifera was characterized by high levels of (E)-caryophyllene (36.7%) and β-elemene (20.49%). The I. asarifolia EO showed a phytol derivative as the main chemical constituent in the dry season (35.49%), and its content was reduced in the sample collected during the wet season (10.67%). The constituent (E)-caryophyllene was also present in the leaves of I. asarifolia, but at lower levels (15.93-19.93%) when compared to the EOs of I. setifera. Our computational analyses indicated that the constituents caryophyllene oxide, cedroxyde, pentadecanal, and phytol can be related to the toxicity of these weeds. This is the first study to report the chemical composition of I. asarifolia and I. setifera EOs and correlate their molecular mechanism of toxicity using in silico approaches.<br /> (Copyright © 2021 Elsevier Ltd. All rights reserved.)

Details

Language :
English
ISSN :
1879-3150
Volume :
195
Database :
MEDLINE
Journal :
Toxicon : official journal of the International Society on Toxinology
Publication Type :
Academic Journal
Accession number :
33667485
Full Text :
https://doi.org/10.1016/j.toxicon.2021.02.015