Back to Search
Start Over
Ocular dominance columns in V1 are more susceptible than associated callosal patches to imbalance of eye input during precritical and critical periods.
- Source :
-
The Journal of comparative neurology [J Comp Neurol] 2021 Aug 01; Vol. 529 (11), pp. 2883-2910. Date of Electronic Publication: 2021 Mar 17. - Publication Year :
- 2021
-
Abstract
- In Long Evans rats, ocular dominance columns (ODCs) in V1 overlap with patches of callosal connections. Using anatomical tracers, we found that ODCs and callosal patches are present at postnatal day 10 (P10), several days before eye opening, and about 10 days before the activation of the critical period for ocular dominance plasticity (~P20). In rats monocularly enucleated at P10 and perfused ~P20, ODCs ipsilateral to the remaining eye desegregated, indicating that rat ODCs are highly susceptible to monocular enucleation during a precritical period. Monocular enucleation during the critical period exerted significant, although smaller, effects. Monocular eye lid suture during the critical period led to a significant expansion of the ipsilateral projection from the nondeprived eye, whereas the contralateral projection invaded into, and intermixed with, ipsilateral ODCs innervated by the deprived eye. We propose that this intermixing allows callosal connections to contribute to the effects of monocular deprivation assessed in the hemisphere ipsilateral to the nondeprived eye. The ipsilateral and contralateral projections from the deprived eye did not undergo significant shrinkage. In contrast, we found that callosal patches are less susceptible to imbalance of eye input. In rats monocularly enucleated during either the precritical or critical periods, callosal patches were maintained in the hemisphere ipsilateral to the remaining eye, but desegregated in the hemisphere ipsilateral to the enucleated orbit. Callosal patches were maintained in rats binocularly enucleated at P10 or later. Similarly, monocular deprivation during the critical period had no significant effect on callosal patches in either hemisphere.<br /> (© 2021 Wiley Periodicals LLC.)
- Subjects :
- Age Factors
Animals
Animals, Newborn
Corpus Callosum chemistry
Photic Stimulation methods
Rats
Rats, Long-Evans
Sensory Deprivation physiology
Visual Cortex chemistry
Visual Pathways chemistry
Corpus Callosum growth & development
Critical Period, Psychological
Dominance, Ocular physiology
Vision, Monocular physiology
Visual Cortex growth & development
Visual Pathways growth & development
Subjects
Details
- Language :
- English
- ISSN :
- 1096-9861
- Volume :
- 529
- Issue :
- 11
- Database :
- MEDLINE
- Journal :
- The Journal of comparative neurology
- Publication Type :
- Academic Journal
- Accession number :
- 33683706
- Full Text :
- https://doi.org/10.1002/cne.25134