Back to Search
Start Over
Improved antiallodynic, antihyperalgesic and anti-inflammatory response achieved through potential prodrug of curcumin, curcumin diethyl diglutarate in a mouse model of neuropathic pain.
- Source :
-
European journal of pharmacology [Eur J Pharmacol] 2021 May 15; Vol. 899, pp. 174008. Date of Electronic Publication: 2021 Mar 08. - Publication Year :
- 2021
-
Abstract
- Neuropathic pain is a debilitating chronic pain condition, and its treatment remains a clinical challenge. Curcumin, a naturally occurring phenolic compound, possesses diverse biological and pharmacological effects but has not yet been approved as a drug due to its low bioavailability. In order to overcome this limitation, we synthesized a potential ester prodrug of curcumin, curcumin diethyl diglutarate (CurDDG). In this study, we evaluated the pharmacological advantages of CurDDG over curcumin in a mouse model of chronic constriction injury (CCI), and the anti-inflammatory effect of CurDDG in LPS-induced RAW 264.7 macrophage cells was accessed to clarify the underline mechanism. Mice were treated with various oral doses of curcumin (25, 50, 100 and 200 mg/kg/day, daily for 14 days) or equimolar doses of CurDDG. CurDDG at all doses tested significantly attenuated CCI-induced thermal hyperalgesia and mechanical allodynia compared with the CCI-control group. CurDDG at 25, 50 and 100 mg/kg demonstrated significantly greater efficacy on both mechanical and thermal hypersensitivities compared to that of curcumin. The effect of CurDDG correlated well with the inhibition of TNF-α and IL-6 levels in both the sciatic nerve and the spinal cord, as compared to its respective control groups. Similarly, in the in vitro study, CurDDG significantly reduced the LPS-induced expression of TNF-α and IL-6. Moreover, CurDDG significantly decreased COX-2 and iNOS levels and attenuated p38, JNK, and ERK1/2 phosphorylation as compared to the curcumin-treated cells. Altogether, this study demonstrated the improved pharmacological effects of curcumin by its diglutarate conjugate, CurDDG.<br /> (Copyright © 2021 Elsevier B.V. All rights reserved.)
- Subjects :
- Animals
Behavior, Animal drug effects
Cyclooxygenase 2 metabolism
Disease Models, Animal
Extracellular Signal-Regulated MAP Kinases metabolism
Hyperalgesia metabolism
Hyperalgesia physiopathology
Inflammation Mediators metabolism
Interleukin-6 metabolism
Macrophages drug effects
Macrophages metabolism
Male
Mice
Mice, Inbred ICR
Nitric Oxide Synthase Type II metabolism
Phosphorylation
RAW 264.7 Cells
Sciatic Nerve metabolism
Sciatic Nerve physiopathology
Sciatica metabolism
Sciatica physiopathology
Signal Transduction
Spinal Cord metabolism
Spinal Cord physiopathology
Succinates
Tumor Necrosis Factor-alpha metabolism
Analgesics pharmacology
Anti-Inflammatory Agents pharmacology
Curcumin analogs & derivatives
Curcumin pharmacology
Glutarates pharmacology
Hyperalgesia prevention & control
Pain Threshold drug effects
Prodrugs pharmacology
Sciatic Nerve drug effects
Sciatica prevention & control
Spinal Cord drug effects
Subjects
Details
- Language :
- English
- ISSN :
- 1879-0712
- Volume :
- 899
- Database :
- MEDLINE
- Journal :
- European journal of pharmacology
- Publication Type :
- Academic Journal
- Accession number :
- 33705800
- Full Text :
- https://doi.org/10.1016/j.ejphar.2021.174008