Back to Search
Start Over
SGANRDA: semi-supervised generative adversarial networks for predicting circRNA-disease associations.
- Source :
-
Briefings in bioinformatics [Brief Bioinform] 2021 Sep 02; Vol. 22 (5). - Publication Year :
- 2021
-
Abstract
- Emerging research shows that circular RNA (circRNA) plays a crucial role in the diagnosis, occurrence and prognosis of complex human diseases. Compared with traditional biological experiments, the computational method of fusing multi-source biological data to identify the association between circRNA and disease can effectively reduce cost and save time. Considering the limitations of existing computational models, we propose a semi-supervised generative adversarial network (GAN) model SGANRDA for predicting circRNA-disease association. This model first fused the natural language features of the circRNA sequence and the features of disease semantics, circRNA and disease Gaussian interaction profile kernel, and then used all circRNA-disease pairs to pre-train the GAN network, and fine-tune the network parameters through labeled samples. Finally, the extreme learning machine classifier is employed to obtain the prediction result. Compared with the previous supervision model, SGANRDA innovatively introduced circRNA sequences and utilized all the information of circRNA-disease pairs during the pre-training process. This step can increase the information content of the feature to some extent and reduce the impact of too few known associations on the model performance. SGANRDA obtained AUC scores of 0.9411 and 0.9223 in leave-one-out cross-validation and 5-fold cross-validation, respectively. Prediction results on the benchmark dataset show that SGANRDA outperforms other existing models. In addition, 25 of the top 30 circRNA-disease pairs with the highest scores of SGANRDA in case studies were verified by recent literature. These experimental results demonstrate that SGANRDA is a useful model to predict the circRNA-disease association and can provide reliable candidates for biological experiments.<br /> (© The Author(s) 2021. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.)
- Subjects :
- Area Under Curve
Computational Biology methods
Databases, Genetic
Datasets as Topic
Gene Expression Regulation
Humans
Multiple Sclerosis metabolism
Multiple Sclerosis pathology
Myocardial Infarction metabolism
Myocardial Infarction pathology
Neoplasms classification
Neoplasms metabolism
Neoplasms pathology
Osteoarthritis metabolism
Osteoarthritis pathology
RNA, Circular classification
RNA, Circular metabolism
Risk Factors
Deep Learning
Gene Regulatory Networks
Multiple Sclerosis genetics
Myocardial Infarction genetics
Neoplasms genetics
Osteoarthritis genetics
RNA, Circular genetics
Subjects
Details
- Language :
- English
- ISSN :
- 1477-4054
- Volume :
- 22
- Issue :
- 5
- Database :
- MEDLINE
- Journal :
- Briefings in bioinformatics
- Publication Type :
- Academic Journal
- Accession number :
- 33734296
- Full Text :
- https://doi.org/10.1093/bib/bbab028