Back to Search Start Over

Amidinate Supporting Ligands Influence Molecularity in Formation of Uranium Nitrides.

Authors :
Straub MD
Moreau LM
Qiao Y
Ouellette ET
Boreen MA
Lohrey TD
Settineri NS
Hohloch S
Booth CH
Minasian SG
Arnold J
Source :
Inorganic chemistry [Inorg Chem] 2021 May 03; Vol. 60 (9), pp. 6672-6679. Date of Electronic Publication: 2021 Apr 12.
Publication Year :
2021

Abstract

Uranium nitride complexes are attractive targets for chemists as molecular models for the bonding, reactivity, and magnetic properties of next-generation nuclear fuels, but these molecules are uncommon and can be difficult to isolate due to their high reactivity. Here, we describe the synthesis of three new multinuclear uranium nitride complexes, [U(BCMA) <subscript>2</subscript> ] <subscript>2</subscript> (μ-N)(μ-κ <superscript>1</superscript> :κ <superscript>1</superscript> -BCMA) ( 7 ), [(U(BIMA) <subscript>2</subscript> ) <subscript>2</subscript> (μ-N)(μ-N <superscript> i </superscript> Pr)(K <subscript>2</subscript> (μ-η <superscript>3</superscript> :η <superscript>3</superscript> -CH <subscript>2</subscript> CHN <superscript> i </superscript> Pr)] <subscript>2</subscript> ( 8 ), and [U(BIMA) <subscript>2</subscript> ] <subscript>2</subscript> (μ-N)(μ-κ <superscript>1</superscript> :κ <superscript>1</superscript> -BIMA) ( 9 ) (BCMA = N , N -bis(cyclohexyl)methylamidinate, BIMA = N , N -bis( iso -propyl)methylamidinate), from U(III) and U(IV) amidinate precursors. By varying the amidinate ligand substituents and azide source, we were able to influence the composition and size of these nitride complexes. <superscript>15</superscript> N isotopic labeling experiments confirmed the bridging nitride moieties in 7 - 9 were formed via two-electron reduction of azide. The tetra-uranium cluster 8 was isolated in 99% yield via reductive cleavage of the amidinate ligands; this unusual molecule contains nitrogen-based ligands with formal 1-, 2-, and 3- charges. Additionally, chemical oxidation of the U(IV) precursor U(N <subscript>3</subscript> )(BCMA) <subscript>3</subscript> yielded the cationic U(V) species [U(N <subscript>3</subscript> )(BCMA) <subscript>3</subscript> ][OTf]. Magnetic susceptibility measurements confirmed a U(IV) oxidation state for the uranium centers in the three nitride-bridged complexes and provided a comparison of magnetic behavior in the structurally related U(III)-U(IV)-U(V) series U(BCMA) <subscript>3</subscript> , U(N <subscript>3</subscript> )(BCMA) <subscript>3</subscript> , and [U(N <subscript>3</subscript> )(BCMA) <subscript>3</subscript> ][OTf]. At 240 K, the magnetic moments in this series decreased with increasing oxidation state, i.e., U(III) > U(IV) > U(V); this trend follows the decreasing number of 5f valence electrons along this series.

Details

Language :
English
ISSN :
1520-510X
Volume :
60
Issue :
9
Database :
MEDLINE
Journal :
Inorganic chemistry
Publication Type :
Academic Journal
Accession number :
33844509
Full Text :
https://doi.org/10.1021/acs.inorgchem.1c00471