Back to Search Start Over

Hyper-O-GlcNAcylation impairs insulin response against reperfusion-induced myocardial injury and arrhythmias in obesity.

Authors :
Jin L
Gao F
Jiang T
Liu B
Li C
Qin X
Zheng Q
Source :
Biochemical and biophysical research communications [Biochem Biophys Res Commun] 2021 Jun 18; Vol. 558, pp. 126-133. Date of Electronic Publication: 2021 Apr 26.
Publication Year :
2021

Abstract

Myocardial ischemia/reperfusion (I/R) injury is a major determinant of morbidity and mortality in patients undergoing treatment for cardiac disease. A variety of treatments are reported to have benefits against reperfusion injury, yet their cardioprotective effects seem to be diminished in obesity, and the underlying mechanism remains elusive. In this study, we found that db/db mice exhibit cardiac hyper-O-GlcNAcylation. In parallel, palmitate treatment (200 mM; 12 h) in H9c2 cells showed an increase in global protein O-GlcNAcylation, along with an impaired insulin response against reperfusion injury. To investigate whether O-GlcNAcylation underlies this phenomenon, glucosamine was used to increase global protein O-GlcNAc levels. Interestingly, histological staining, electrophysiological studies, serum cardiac markers and oxidative stress biomarker assays showed that preischemic treatment with glucosamine attenuated insulin cardioprotection against myocardial infarction, arrhythmia and oxidative stress. Mechanistically, glucosamine treatment decreased insulin-stimulated Akt phosphorylation, a key modulator of cell survival. Furthermore, inhibition of O-GlcNAcylation via 6-diazo-5-oxo-l-norleucine (DON) apparently increased insulin-induced Akt phosphorylation and restored its cardioprotective response against reperfusion injury in palmitate-induced insulin-resistant H9c2 cells. Our findings demonstrated that obesity-induced hyper-O-GlcNAcylation might contribute to the attenuation of insulin cardioprotection against I/R injury.<br />Competing Interests: Declaration of competing interest The authors declare that they have no competing interests.<br /> (Copyright © 2021 Elsevier Inc. All rights reserved.)

Details

Language :
English
ISSN :
1090-2104
Volume :
558
Database :
MEDLINE
Journal :
Biochemical and biophysical research communications
Publication Type :
Academic Journal
Accession number :
33915326
Full Text :
https://doi.org/10.1016/j.bbrc.2021.04.066