Back to Search
Start Over
Parental genome unification is highly error-prone in mammalian embryos.
- Source :
-
Cell [Cell] 2021 May 27; Vol. 184 (11), pp. 2860-2877.e22. Date of Electronic Publication: 2021 May 07. - Publication Year :
- 2021
-
Abstract
- Most human embryos are aneuploid. Aneuploidy frequently arises during the early mitotic divisions of the embryo, but its origin remains elusive. Human zygotes that cluster their nucleoli at the pronuclear interface are thought to be more likely to develop into healthy euploid embryos. Here, we show that the parental genomes cluster with nucleoli in each pronucleus within human and bovine zygotes, and clustering is required for the reliable unification of the parental genomes after fertilization. During migration of intact pronuclei, the parental genomes polarize toward each other in a process driven by centrosomes, dynein, microtubules, and nuclear pore complexes. The maternal and paternal chromosomes eventually cluster at the pronuclear interface, in direct proximity to each other, yet separated. Parental genome clustering ensures the rapid unification of the parental genomes on nuclear envelope breakdown. However, clustering often fails, leading to chromosome segregation errors and micronuclei, incompatible with healthy embryo development.<br />Competing Interests: Declaration of interests The authors declare no competing interests.<br /> (Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved.)
- Subjects :
- Aneuploidy
Animals
Cattle
Cell Nucleolus metabolism
Cell Nucleus metabolism
Centrosome metabolism
Chromosome Segregation physiology
Chromosomes metabolism
Fertilization genetics
Humans
Male
Microtubules metabolism
Mitosis
Oocytes metabolism
Spermatozoa metabolism
Zygote metabolism
Embryo, Mammalian metabolism
Embryonic Development genetics
Subjects
Details
- Language :
- English
- ISSN :
- 1097-4172
- Volume :
- 184
- Issue :
- 11
- Database :
- MEDLINE
- Journal :
- Cell
- Publication Type :
- Academic Journal
- Accession number :
- 33964210
- Full Text :
- https://doi.org/10.1016/j.cell.2021.04.013