Back to Search Start Over

High Potential for Biomass-Degrading Enzymes Revealed by Hot Spring Metagenomics.

Authors :
Reichart NJ
Bowers RM
Woyke T
Hatzenpichler R
Source :
Frontiers in microbiology [Front Microbiol] 2021 Apr 21; Vol. 12, pp. 668238. Date of Electronic Publication: 2021 Apr 21 (Print Publication: 2021).
Publication Year :
2021

Abstract

Enzyme stability and activity at elevated temperatures are important aspects in biotechnological industries, such as the conversion of plant biomass into biofuels. In order to reduce the costs and increase the efficiency of biomass conversion, better enzymatic processing must be developed. Hot springs represent a treasure trove of underexplored microbiological and protein chemistry diversity. Herein, we conduct an exploratory study into the diversity of hot spring biomass-degrading potential. We describe the taxonomic diversity and carbohydrate active enzyme (CAZyme) coding potential in 71 publicly available metagenomic datasets from 58 globally distributed terrestrial geothermal features. Through taxonomic profiling, we detected a wide diversity of microbes unique to varying temperature and pH ranges. Biomass-degrading enzyme potential included all five classes of CAZymes and we described the presence or absence of genes encoding 19 glycosyl hydrolases hypothesized to be involved with cellulose, hemicellulose, and oligosaccharide degradation. Our results highlight hot springs as a promising system for the further discovery and development of thermo-stable biomass-degrading enzymes that can be applied toward generation of renewable biofuels. This study lays a foundation for future research to further investigate the functional diversity of hot spring biomass-degrading enzymes and their potential utility in biotechnological processing.<br />Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.<br /> (Copyright © 2021 Reichart, Bowers, Woyke and Hatzenpichler.)

Details

Language :
English
ISSN :
1664-302X
Volume :
12
Database :
MEDLINE
Journal :
Frontiers in microbiology
Publication Type :
Academic Journal
Accession number :
33968004
Full Text :
https://doi.org/10.3389/fmicb.2021.668238