Back to Search Start Over

Orbital Complexity in Intrinsic Magnetic Topological Insulators MnBi_{4}Te_{7} and MnBi_{6}Te_{10}.

Authors :
Vidal RC
Bentmann H
Facio JI
Heider T
Kagerer P
Fornari CI
Peixoto TRF
Figgemeier T
Jung S
Cacho C
Büchner B
van den Brink J
Schneider CM
Plucinski L
Schwier EF
Shimada K
Richter M
Isaeva A
Reinert F
Source :
Physical review letters [Phys Rev Lett] 2021 Apr 30; Vol. 126 (17), pp. 176403.
Publication Year :
2021

Abstract

Using angle-resolved photoelectron spectroscopy (ARPES), we investigate the surface electronic structure of the magnetic van der Waals compounds MnBi_{4}Te_{7} and MnBi_{6}Te_{10}, the n=1 and 2 members of a modular (Bi_{2}Te_{3})_{n}(MnBi_{2}Te_{4}) series, which have attracted recent interest as intrinsic magnetic topological insulators. Combining circular dichroic, spin-resolved and photon-energy-dependent ARPES measurements with calculations based on density functional theory, we unveil complex momentum-dependent orbital and spin textures in the surface electronic structure and disentangle topological from trivial surface bands. We find that the Dirac-cone dispersion of the topologial surface state is strongly perturbed by hybridization with valence-band states for Bi_{2}Te_{3}-terminated surfaces but remains preserved for MnBi_{2}Te_{4}-terminated surfaces. Our results firmly establish the topologically nontrivial nature of these magnetic van der Waals materials and indicate that the possibility of realizing a quantized anomalous Hall conductivity depends on surface termination.

Details

Language :
English
ISSN :
1079-7114
Volume :
126
Issue :
17
Database :
MEDLINE
Journal :
Physical review letters
Publication Type :
Academic Journal
Accession number :
33988442
Full Text :
https://doi.org/10.1103/PhysRevLett.126.176403