Back to Search Start Over

Exposure to Particulate Matter Air Pollution and Anosmia.

Authors :
Zhang Z
Rowan NR
Pinto JM
London NR
Lane AP
Biswal S
Ramanathan M Jr
Source :
JAMA network open [JAMA Netw Open] 2021 May 03; Vol. 4 (5), pp. e2111606. Date of Electronic Publication: 2021 May 03.
Publication Year :
2021

Abstract

Importance: Anosmia, the loss of the sense of smell, has profound implications for patient safety, well-being, and quality of life, and it is a predictor of patient frailty and mortality. Exposure to air pollution may be an olfactory insult that contributes to the development of anosmia.<br />Objective: To investigate the association between long-term exposure to particulate matter (PM) with an aerodynamic diameter of no more than 2.5 μm (PM2.5) with anosmia.<br />Design, Setting, and Participants: This case-control study examined individuals who presented from January 1, 2013, through December 31, 2016, at an academic medical center in Baltimore, Maryland. Case participants were diagnosed with anosmia by board-certified otolaryngologists. Control participants were selected using the nearest neighbor matching strategy for age, sex, race/ethnicity, and date of diagnosis. Data analysis was conducted from September 2020 to March 2021.<br />Exposures: Ambient PM2.5 levels.<br />Main Outcomes and Measures: Novel method to quantify ambient PM2.5 exposure levels in patients diagnosed with anosmia compared with matched control participants.<br />Results: A total of 2690 patients were identified with a mean (SD) age of 55.3 (16.6) years. The case group included 538 patients with anosmia (20%), and the control group included 2152 matched control participants (80%). Most of the individuals in the case and control groups were women, White patients, had overweight (BMI 25 to <30), and did not smoke (women: 339 [63.0%] and 1355 [63.0%]; White patients: 318 [59.1%] and 1343 [62.4%]; had overweight: 179 [33.3%] and 653 [30.3%]; and did not smoke: 328 [61.0%] and 1248 [58.0%]). Mean (SD) exposure to PM2.5 was significantly higher in patients with anosmia compared with healthy control participants at 12-, 24-, 36-, 60-month time points: 10.2 (1.6) μg/m3 vs 9.9 (1.9) μg/m3; 10.5 (1.7) μg/m3 vs 10.2 (1.9) μg/m3; 10.8 (1.8) μg/m3 vs 10.4 (2.0) μg/m3; and 11.0 (1.8) μg/m3 vs 10.7 (2.1) μg/m3, respectively. There was an association between elevated PM2.5 exposure level and odds of anosmia in multivariate analyses that adjusted for age, sex, race/ethnicity, body mass index, alcohol or tobacco use, and medical comorbidities (12 mo: odds ratio [OR], 1.73; 95% CI, 1.28-2.33; 24 mo: OR, 1.72; 95% CI, 1.30-2.29; 36 mo: OR, 1.69; 95% CI, 1.30-2.19; and 60 mo: OR, 1.59; 95% CI, 1.22-2.08). The association between long-term exposure to PM2.5 and the odds of developing anosmia was nonlinear, as indicated by spline analysis. For example, for 12 months of exposure to PM2.5, the odds of developing anosmia at 6.0 µg/m3 was OR 0.79 (95% CI, 0.64-0.97); at 10.0 µg/m3, OR 1.42 (95% CI, 1.10-1.82); at 15.0 µg/m3, OR 2.03 (95% CI, 1.15-3.58).<br />Conclusions and Relevance: In this study, long-term airborne exposure to PM2.5 was associated with anosmia. Ambient PM2.5 represents a potentially ubiquitous and modifiable risk factor for the loss of sense of smell.

Details

Language :
English
ISSN :
2574-3805
Volume :
4
Issue :
5
Database :
MEDLINE
Journal :
JAMA network open
Publication Type :
Academic Journal
Accession number :
34042992
Full Text :
https://doi.org/10.1001/jamanetworkopen.2021.11606