Back to Search
Start Over
Exploring the potential of engineering polygalacturonase-inhibiting protein as an ecological, friendly, and nontoxic pest control agent.
- Source :
-
Biotechnology and bioengineering [Biotechnol Bioeng] 2021 Aug; Vol. 118 (8), pp. 3200-3214. Date of Electronic Publication: 2021 Jun 06. - Publication Year :
- 2021
-
Abstract
- In plants, polygalacturonase-inhibiting proteins (PGIPs) play critical roles for resistance to fungal disease by inhibiting the pectin-depolymerizing activity of endopolygalacturonases (PGs), one type of enzyme secreted by pathogens that compromises plant cell walls and leaves the plant susceptible to disease. Here, the interactions between PGIPs from Phaseolus vulgaris (PvPGIP1 and PvPGIP2) and PGs from Aspergillus niger (AnPG2), Botrytis cinerea (BcPG1 and BcPG2), and Fusarium moniliforme (FmPG3) were reconstituted through a yeast two hybrid (Y2H) system to investigate the inhibition efficiency of various PvPGIP1 and 2 truncations and mutants. We found that tPvPGIP2&#95;5-8, which contains LRR5 to LRR8 and is only one-third the size of the full length peptide, exhibits the same level of interactions with AnPG and BcPGs as the full length PvPGIP2 via Y2H. The inhibitory activities of tPvPGIP2&#95;5-8 on the growth of A. niger and B. cinerea were then examined and confirmed on pectin agar. On pectin assays, application of both full length PvPGIP2 and tPvPGIP2&#95;5-8 clearly slows down the growth of A. niger and B. cinerea. Investigation on the sequence-function relationships of PGIP utilizing a combination of site directed mutagenesis and a variety of peptide truncations suggests that LRR5 could have the most essential structural feature for the inhibitory activities, and may be a possible target for the future engineering of PGIP with enhanced activity. This study highlights the potential of plant-derived PGIPs as a candidate for future in planta evaluation as a pest control agent.<br /> (© 2021 Wiley Periodicals LLC.)
- Subjects :
- Phaseolus genetics
Plant Proteins genetics
Aspergillus niger enzymology
Fungal Proteins antagonists & inhibitors
Fungal Proteins chemistry
Fungal Proteins genetics
Fusarium enzymology
Pest Control, Biological
Phaseolus chemistry
Plant Proteins chemistry
Polygalacturonase antagonists & inhibitors
Polygalacturonase chemistry
Polygalacturonase genetics
Subjects
Details
- Language :
- English
- ISSN :
- 1097-0290
- Volume :
- 118
- Issue :
- 8
- Database :
- MEDLINE
- Journal :
- Biotechnology and bioengineering
- Publication Type :
- Academic Journal
- Accession number :
- 34050940
- Full Text :
- https://doi.org/10.1002/bit.27845