Back to Search Start Over

Fault Diagnosis and Fault Frequency Determination of Permanent Magnet Synchronous Motor Based on Deep Learning.

Authors :
Wang CS
Kao IH
Perng JW
Source :
Sensors (Basel, Switzerland) [Sensors (Basel)] 2021 May 22; Vol. 21 (11). Date of Electronic Publication: 2021 May 22.
Publication Year :
2021

Abstract

The early diagnosis of a motor is important. Many researchers have used deep learning to diagnose motor applications. This paper proposes a one-dimensional convolutional neural network for the diagnosis of permanent magnet synchronous motors. The one-dimensional convolutional neural network model is weakly supervised and consists of multiple convolutional feature-extraction modules. Through the analysis of the torque and current signals of the motors, the motors can be diagnosed under a wide range of speeds, variable loads, and eccentricity effects. The advantage of the proposed method is that the feature-extraction modules can extract multiscale features from complex conditions. The number of training parameters was reduced so as to solve the overfitting problem. Furthermore, the class feature map was proposed to automatically determine the frequency component that contributes to the classification using the weak learning method. The experimental results reveal that the proposed model can effectively diagnose three different motor states-healthy state, demagnetization fault state, and bearing fault state. In addition, the model can detect eccentric effects. By combining the current and torque features, the classification accuracy of the proposed model is up to 98.85%, which is higher than that of classical machine-learning methods such as the k-nearest neighbor and support vector machine.

Details

Language :
English
ISSN :
1424-8220
Volume :
21
Issue :
11
Database :
MEDLINE
Journal :
Sensors (Basel, Switzerland)
Publication Type :
Academic Journal
Accession number :
34067249
Full Text :
https://doi.org/10.3390/s21113608