Back to Search
Start Over
Bio-Functionalized Chitosan for Bone Tissue Engineering.
- Source :
-
International journal of molecular sciences [Int J Mol Sci] 2021 May 31; Vol. 22 (11). Date of Electronic Publication: 2021 May 31. - Publication Year :
- 2021
-
Abstract
- Hybrid biomaterials allow for the improvement of the biological properties of materials and have been successfully used for implantology in medical applications. The covalent and selective functionalization of materials with bioactive peptides provides favorable results in tissue engineering by supporting cell attachment to the biomaterial through biochemical cues and interaction with membrane receptors. Since the functionalization with bioactive peptides may alter the chemical and physical properties of the biomaterials, in this study we characterized the biological responses of differently functionalized chitosan analogs. Chitosan analogs were produced through the reaction of GRGDSPK (RGD) or FRHRNRKGY (HVP) sequences, both carrying an aldehyde-terminal group, to chitosan. The bio-functionalized polysaccharides, pure or "diluted" with chitosan, were chemically characterized in depth and evaluated for their antimicrobial activities and biocompatibility toward human primary osteoblast cells. The results obtained indicate that the bio-functionalization of chitosan increases human-osteoblast adhesion ( p < 0.005) and proliferation ( p < 0.005) as compared with chitosan. Overall, the 1:1 mixture of HVP functionalized-chitosan:chitosan is the best compromise between preserving the antibacterial properties of the material and supporting osteoblast differentiation and calcium deposition ( p < 0.005 vs. RGD). In conclusion, our results reported that a selected concentration of HVP supported the biomimetic potential of functionalized chitosan better than RGD and preserved the antibacterial properties of chitosan.
- Subjects :
- Biocompatible Materials chemical synthesis
Biocompatible Materials chemistry
Biocompatible Materials pharmacology
Bone Regeneration genetics
Bone and Bones drug effects
Cell Adhesion drug effects
Cell Differentiation drug effects
Cell Proliferation drug effects
Chitosan analogs & derivatives
Chitosan chemical synthesis
Chitosan pharmacology
Durapatite chemistry
Durapatite pharmacology
Humans
Oligopeptides chemical synthesis
Oligopeptides chemistry
Osteoblasts drug effects
Tissue Scaffolds chemistry
Bone Regeneration drug effects
Bone Transplantation methods
Chitosan chemistry
Osteogenesis drug effects
Tissue Engineering
Subjects
Details
- Language :
- English
- ISSN :
- 1422-0067
- Volume :
- 22
- Issue :
- 11
- Database :
- MEDLINE
- Journal :
- International journal of molecular sciences
- Publication Type :
- Academic Journal
- Accession number :
- 34072888
- Full Text :
- https://doi.org/10.3390/ijms22115916