Back to Search
Start Over
Further Biochemical Profiling of Hypholoma fasciculare Metabolome Reveals Its Chemogenetic Diversity.
- Source :
-
Frontiers in bioengineering and biotechnology [Front Bioeng Biotechnol] 2021 May 24; Vol. 9, pp. 567384. Date of Electronic Publication: 2021 May 24 (Print Publication: 2021). - Publication Year :
- 2021
-
Abstract
- Natural products with novel chemistry are urgently needed to battle the continued increase in microbial drug resistance. Mushroom-forming fungi are underutilized as a source of novel antibiotics in the literature due to their challenging culture preparation and genetic intractability. However, modern fungal molecular and synthetic biology tools have renewed interest in exploring mushroom fungi for novel therapeutic agents. The aims of this study were to investigate the secondary metabolites of nine basidiomycetes, screen their biological and chemical properties, and then investigate the genetic pathways associated with their production. Of the nine fungi selected, Hypholoma fasciculare was revealed to be a highly active antagonistic species, with antimicrobial activity against three different microorganisms: Bacillus subtilis , Escherichia coli , and Saccharomyces cerevisiae . Genomic comparisons and chromatographic studies were employed to characterize more than 15 biosynthetic gene clusters and resulted in the identification of 3,5-dichloromethoxy benzoic acid as a potential antibacterial compound. The biosynthetic gene cluster for this product is also predicted. This study reinforces the potential of mushroom-forming fungi as an underexplored reservoir of bioactive natural products. Access to genomic data, and chemical-based frameworks, will assist the development and application of novel molecules with applications in both the pharmaceutical and agrochemical industries.<br />Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.<br /> (Copyright © 2021 Al-Salihi, Bull, Al-Salhi, Gates, Salih, Bailey and Foster.)
Details
- Language :
- English
- ISSN :
- 2296-4185
- Volume :
- 9
- Database :
- MEDLINE
- Journal :
- Frontiers in bioengineering and biotechnology
- Publication Type :
- Academic Journal
- Accession number :
- 34109161
- Full Text :
- https://doi.org/10.3389/fbioe.2021.567384