Back to Search Start Over

A hierarchical hollow Ni/Co-functionalized MoS 2 architecture with highly sensitive non-enzymatic glucose sensing activity.

Authors :
Xu X
Zhang Y
Han Y
Wu J
Zhang X
Xu Y
Source :
Dalton transactions (Cambridge, England : 2003) [Dalton Trans] 2021 Jul 27; Vol. 50 (29), pp. 10059-10066.
Publication Year :
2021

Abstract

A hierarchical hollow Ni/Co-codoped MoS2 architecture was successfully prepared using a Ni/Co Prussian Blue analogue as the precursor followed by the solvothermal-assisted insertion of MoS42- and extraction of [Co(CN)6]3- at 200 °C for 32 h. The obtained Ni/Co-codoped MoS2 composite exhibited a hollow microcubic structural characteristic, and the morphology, structure, and chemical compositions were carefully characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS), respectively. The Ni/Co-codoped MoS2 composite used as an electrode material featured excellent glucose sensing activity and a high sensitivity of 2546 μA mM-1 cm-2 with a relatively low detection limit of 0.69 μM (S/N = 3). In addition, the Ni/Co-codoped MoS2 composite showed good anti-interference sensing performance in the presence of ascorbic acid (AA), lysine (Lys), cysteine (Cys), urea, H2O2, KCl, and other interferents. These experimental results revealed that the composite is a promising electrode material for enzyme-free glucose sensing, and the feasible synthetic strategy may provide an effective and controlled route to prepare other multi-metal substituted sulfide-based hierarchical structures with high electrochemical sensing performance.

Details

Language :
English
ISSN :
1477-9234
Volume :
50
Issue :
29
Database :
MEDLINE
Journal :
Dalton transactions (Cambridge, England : 2003)
Publication Type :
Academic Journal
Accession number :
34169948
Full Text :
https://doi.org/10.1039/d1dt01406d