Back to Search Start Over

A connectivity model of the anatomic substrates underlying ideomotor apraxia: A meta-analysis of functional neuroimaging studies.

Authors :
O'Neal CM
Ahsan SA
Dadario NB
Fonseka RD
Young IM
Parker A
Maxwell BD
Yeung JT
Briggs RG
Teo C
Sughrue ME
Source :
Clinical neurology and neurosurgery [Clin Neurol Neurosurg] 2021 Aug; Vol. 207, pp. 106765. Date of Electronic Publication: 2021 Jun 17.
Publication Year :
2021

Abstract

Background: Patients with ideomotor apraxia (IMA) present with selective impairments in higher-order motor cognition and execution without damage to any motor or sensory pathways. Although extensive research has been conducted to determine the regions of interest (ROIs) underlying these unique impairments, previous models are heterogeneous and may be further clarified based on their structural connectivity, which has been far less described.<br />Objective: The goal of this research is to propose an anatomically concise network model for the neurophysiologic basis of IMA, specific to the voluntary pantomime, imitation and tool execution, based on intrinsic white matter connectivity.<br />Methods: We utilized meta-analytic software to identify relevant ROIs in ideomotor apraxia as reported in the literature based on functional neuroimaging data with healthy participants. After generating an activation likelihood estimation (ALE) of relevant ROIs, cortical parcellations overlapping the ALE were used to construct an anatomically precise model of anatomic substrates using the parcellation scheme outlined by the Human Connectome Project (HCP). Deterministic tractography was then performed on 25 randomly selected, healthy HCP subjects to determine the structural connectivity underlying the identified ROIs.<br />Results: 10 task-based fMRI studies met our inclusion criteria and the ALE analysis demonstrated 6 ROIs to constitute the IMA network: SCEF, FOP4, MIP, AIP, 7AL, and 7PC. These parcellations represent a fronto-parietal network consisting mainly of intra-parietal, U-shaped association fibers (40%) and long-range inferior fronto-occipital fascicle (IFOF) fibers (50%). These findings support previous functional models based on dual-stream motor processing.<br />Conclusion: We constructed a preliminary model demonstrating the underlying structural interconnectedness of anatomic substrates involved in higher-order motor functioning which is seen impaired in IMA. Our model provides support for previous dual-stream processing frameworks discussed in the literature, but further clarification is necessary with voxel-based lesion studies of IMA to further refine these findings.<br /> (Copyright © 2021 Elsevier B.V. All rights reserved.)

Details

Language :
English
ISSN :
1872-6968
Volume :
207
Database :
MEDLINE
Journal :
Clinical neurology and neurosurgery
Publication Type :
Academic Journal
Accession number :
34237682
Full Text :
https://doi.org/10.1016/j.clineuro.2021.106765