Back to Search Start Over

The chemical diversity, the attractant, anti-acetylcholinesterase, and antifungal activities of metabolites from biocontrol Trichoderma harzianum uncovered by OSMAC strategy.

Authors :
Wang XY
Xu TT
Sun LJ
Cen RH
Su S
Yang XQ
Yang YB
Ding ZT
Source :
Bioorganic chemistry [Bioorg Chem] 2021 Sep; Vol. 114, pp. 105148. Date of Electronic Publication: 2021 Jul 06.
Publication Year :
2021

Abstract

Eight new compounds (1-8) were discovered from Trichoderma harzianum associated with edible mushroom by the one strain many compounds (OSMAC) strategy. Triharzianin A (1) is the first naturally scaffold characterized by a C <subscript>13</subscript> -prostaglandin skeleton. The configurations of 1-3, and 5 were determined by the Mosher's method, experimental and calculated ECD spectra, and plausible biosynthesis of stereospecific epoxidation. Most compounds indicated obvious feeding attractant activities to silkworm with attraction rates at 30-90%. Compound 7 showed anti-acetylcholinesterase (anti-AChE) activity with a ratio of 29% at a concentration of 50 μM for insecticidal potential. So 2,​3-​dialkylchromone (7) had potential of chemical entrapment and killing of insects. Compounds 2, 3 and 7-11 showed antifungal activities against Aspergillus fumigates, and Trichoderma sp. from mushroom with MICs ≤ 300 μM. The four fermentation extracts also indicated obvious feeding attractant activities to silkworm for the activities brought by active metabolites from T. harzianum. The material base of biocontrol induced by the interaction of host-fungal symbiont can be investigated by the antifungal metabolites against pathogen fungi.<br /> (Copyright © 2021 Elsevier Inc. All rights reserved.)

Details

Language :
English
ISSN :
1090-2120
Volume :
114
Database :
MEDLINE
Journal :
Bioorganic chemistry
Publication Type :
Academic Journal
Accession number :
34246973
Full Text :
https://doi.org/10.1016/j.bioorg.2021.105148