Back to Search
Start Over
Development of MRI-Based Radiomics Model to Predict the Risk of Recurrence in Patients With Advanced High-Grade Serous Ovarian Carcinoma.
- Source :
-
AJR. American journal of roentgenology [AJR Am J Roentgenol] 2021 Sep; Vol. 217 (3), pp. 664-675. Date of Electronic Publication: 2021 Jul 14. - Publication Year :
- 2021
-
Abstract
- OBJECTIVE. The purpose of our study was to develop a radiomics model based on preoperative MRI and clinical information for predicting recurrence-free survival (RFS) in patients with advanced high-grade serous ovarian carcinoma (HGSOC). MATERIALS AND METHODS. This retrospective study enrolled 117 patients with HGSOC, including 90 patients with recurrence and 27 without recurrence; 1046 radiomics features were extracted from T2-weighted images and contrast-enhanced T1-weighted images using a manual segmentation method. L1 regularization-based least absolute shrinkage and selection operator (LASSO) regression was performed to select features, and the synthetic minority oversampling technique (SMOTE) was used to balance our dataset. A support vector machine (SVM) classifier was used to build the classification model. To validate the performance of the proposed models, we applied a leave-one-out cross-validation method to train and test the classifier. Cox proportional hazards regression, Harrell concordance index (C-index), and Kaplan-Meier plots analysis were used to evaluate the associations between radiomics signatures and RFS. RESULTS. The fusion radiomics-based model yielded a significantly higher AUC value of 0.85 in evaluating RFS than the model using contrast-enhanced T1-weighted imaging features alone or T2-weighted imaging features alone (AUC = 0.79 and 0.74 and p = .02 and .01, respectively). Kaplan-Meier survival curves showed significant differences between high and low recurrence risk in patients with HGSOC by different models. The fusion model combining radiomics features and clinical information showed higher performance than the clinical model (C-index = 0.62 and 0.60, respectively). CONCLUSION. The proposed MRI-based radiomics signatures may provide a potential way to develop a prediction model and can help identify patients with advanced HGSOC who have a high risk of recurrence.
- Subjects :
- Female
Humans
Middle Aged
Ovary diagnostic imaging
Ovary pathology
Retrospective Studies
Survival Analysis
Image Interpretation, Computer-Assisted methods
Magnetic Resonance Imaging methods
Neoplasm Recurrence, Local diagnostic imaging
Neoplasm Recurrence, Local pathology
Ovarian Neoplasms diagnostic imaging
Ovarian Neoplasms pathology
Support Vector Machine
Subjects
Details
- Language :
- English
- ISSN :
- 1546-3141
- Volume :
- 217
- Issue :
- 3
- Database :
- MEDLINE
- Journal :
- AJR. American journal of roentgenology
- Publication Type :
- Academic Journal
- Accession number :
- 34259544
- Full Text :
- https://doi.org/10.2214/AJR.20.23195