Back to Search
Start Over
Mechanical property gradients of taenioglossan radular teeth are associated with specific function and ecological niche in Paludomidae (Gastropoda: Mollusca).
- Source :
-
Acta biomaterialia [Acta Biomater] 2021 Oct 15; Vol. 134, pp. 513-530. Date of Electronic Publication: 2021 Jul 28. - Publication Year :
- 2021
-
Abstract
- Biological tissues may exhibit graded heterogeneities in structure and mechanical properties that are crucial to their function. One biological structure that shows variation in both structure and function is the molluscan radula: the organ comprises a chitinous membrane with embedded teeth and serves to process and gather food. The tooth morphologies had been well studied in the last decades, but the mechanical properties of the teeth are not known for the vast majority of molluscs. This knowledge gap restricts our understanding of how the radula is able to act effectively on a target surface whilst simultaneously resisting structural failure. Here we employed nanoindentation technique to measure mechanical properties (hardness and Young's modulus) on distinct localities of individual radular teeth from 24 species of African paludomid gastropods. These species have distinct ecological niches as they forage on algae on different feeding substrates. A gradual distribution of measured properties along the teeth was found in species foraging on solid or mixed feeding substrates, but soft substrate feeders exhibit teeth almost homogeneous in their biomechanical properties. The presence or absence of large-scale gradients in these taenioglossan teeth could directly be linked with their specific function and in general with the species ecology, whereas the radular tooth morphologies do not always and fully reflect ecology. STATEMENT OF SIGNIFICANCE: African Lake Tanganyika is well known for harbouring endemic and morphologically distinct genera. Its paludomid gastropods form a flock of high interest because of its diversity. As they show distinct radular tooth morphologies hypotheses about potential trophic specializations had always been at hand. Here we evaluated the mechanical properties Young's modulus and hardness of 9027 individual teeth from 24 species along the tooth by nanoindentation and related them with the gastropods' specific feeding substrate. We find that hard substrate feeders have teeth that are hard at the tips but much less stiff at the base and thus heterogeneous with respect to material properties, whereas soft substrate feeders have teeth that are flexible and homogenous with respect to material properties.<br />Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2021 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.)
Details
- Language :
- English
- ISSN :
- 1878-7568
- Volume :
- 134
- Database :
- MEDLINE
- Journal :
- Acta biomaterialia
- Publication Type :
- Academic Journal
- Accession number :
- 34329785
- Full Text :
- https://doi.org/10.1016/j.actbio.2021.07.057