Back to Search
Start Over
Investigating the spectral features of the brain meso-scale structure at rest.
- Source :
-
Human brain mapping [Hum Brain Mapp] 2021 Oct 15; Vol. 42 (15), pp. 5113-5129. Date of Electronic Publication: 2021 Jul 31. - Publication Year :
- 2021
-
Abstract
- Recent studies provide novel insights into the meso-scale organization of the brain, highlighting the co-occurrence of different structures: classic assortative (modular), disassortative, and core-periphery. However, the spectral properties of the brain meso-scale remain mostly unexplored. To fill this knowledge gap, we investigated how the meso-scale structure is organized across the frequency domain. We analyzed the resting state activity of healthy participants with source-localized high-density electroencephalography signals. Then, we inferred the community structure using weighted stochastic block-model (WSBM) to capture the landscape of meso-scale structures across the frequency domain. We found that different meso-scale modalities co-exist and are diversely organized over the frequency spectrum. Specifically, we found a core-periphery structure dominance, but we also highlighted a selective increase of disassortativity in the low frequency bands (<8 Hz), and of assortativity in the high frequency band (30-50 Hz). We further described other features of the meso-scale organization by identifying those brain regions which, at the same time, (a) exhibited the highest degree of assortativity, disassortativity, and core-peripheriness (i.e., participation) and (b) were consistently assigned to the same community, irrespective from the granularity imposed by WSBM (i.e., granularity-invariance). In conclusion, we observed that the brain spontaneous activity shows frequency-specific meso-scale organization, which may support spatially distributed and local information processing.<br /> (© 2021 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.)
Details
- Language :
- English
- ISSN :
- 1097-0193
- Volume :
- 42
- Issue :
- 15
- Database :
- MEDLINE
- Journal :
- Human brain mapping
- Publication Type :
- Academic Journal
- Accession number :
- 34331365
- Full Text :
- https://doi.org/10.1002/hbm.25607