Back to Search Start Over

Fibrinolytic Enzymes From Extremophilic Microorganisms in the Development of New Thrombolytic Therapies: Technological Prospecting.

Authors :
Soares Bispo JR
de Oliveira Lima IG
da Silva MB
de Oliveira Feitosa A
Dos Santos ACM
Alexandre Moreira MS
Zambrano Passarini MR
Saraiva Câmara PEA
Rosa LH
Oliveira VM
de Queiroz AC
Fernandes Duarte AW
Source :
Recent patents on biotechnology [Recent Pat Biotechnol] 2021; Vol. 15 (3), pp. 169-183.
Publication Year :
2021

Abstract

Extremophilic microorganisms from a wide variety of extreme natural environments have been researched, and many biotechnological applications have been carried out, due to their capacity to produce biomolecules resistant to extreme conditions, such as fibrinolytic proteases. The search for new fibrinolytic enzymes is important in the development of new therapies against cardiovascular diseases. This article aimed to evaluate the patents filed about protease with fibrinolytic activity produced by extremophilic microorganisms whose use is aimed at the development of new drugs for the treatment of cardiovascular diseases. The prospecting was carried out using data on deposits and patent concessions made available on the technological bases: European Patent Office (EPO), United States Patent and Trademark Office (USPTO), World Intellectual Property Organization (WIPO), Instituto Nacional de Propriedade Industrial - Brazil (INPI), The LENS and Patent Inspiration. The International Patent Classification and subclasses and groups for each document were also evaluated. Although 382 patents were selected using terms related to extreme environments, such as "thermophile" and "acidophiles", few were related to clinical use and were mainly performed using Bacillus subtilis and Streptomyces megasporus strains. A highlight of nattokinase was produced by Bacillus subtilis GDN and actinokinase by Streptomyces megasporus SD5. The low number of patents on enzymes with this profile (extreme environments) revealed a little-explored field, promising in the development of new microbial thrombolytic drugs, such as fibrinolytic enzymes with less adverse effects.<br /> (Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.net.)

Details

Language :
English
ISSN :
2212-4012
Volume :
15
Issue :
3
Database :
MEDLINE
Journal :
Recent patents on biotechnology
Publication Type :
Academic Journal
Accession number :
34353276
Full Text :
https://doi.org/10.2174/1872208315666210805154713