Back to Search
Start Over
A naturally occurring point mutation in the hyaluronidase gene ( hysA1 ) of Staphylococcus aureus UAMS-1 results in reduced enzymatic activity.
- Source :
-
Canadian journal of microbiology [Can J Microbiol] 2021 Sep 14, pp. 1-13. Date of Electronic Publication: 2021 Sep 14. - Publication Year :
- 2021
- Publisher :
- Ahead of Print
-
Abstract
- Hyaluronic acid is a high-molecular-weight polysaccharide that is widely distributed in animal tissues. Bacterial hyaluronidases degrade hyaluronic acid as secreted enzymes and have been shown to contribute to infection. Staphylococcus aureus UAMS-1 is a clinical isolate that codes for two hyaluronidases ( hysA1 and hysA2 ). Previous research has shown the presence of a full-length HysA1 protein from the S. aureus UAMS-1 strain with no evidence of enzymatic activity. In this study, the coding and upstream promoter regions of hysA1 from the S. aureus UAMS-1 strain were cloned, sequenced, and compared to the hysA1 gene from the S. aureus Sanger 252 strain. A single base change resulting in an E480G amino acid change was identified in the hysA1 gene from the S. aureus UAMS-1 strain when compared to the hysA1 gene from S. aureus Sanger 252. A plasmid copy of hysA1 from S. aureus Sanger 252 transduced into an S. aureus UAMS-1 hysA2 deletion mutant strain restored near wild-type levels of enzymatic activity. Homology modeling of the HysA1 hyaluronidase was performed with SWISS-MODEL using hyaluronidase from Streptococcus pneumoniae as the template, followed by a series of structural analyses using PyMOL, PLIP, PDBsum, and HOPE servers. This glutamic acid is highly conserved among hyaluronidases from Staphylococcus and other gram-positive bacteria. A series of structural analyses suggested that Glu-480 in HysA1 is critically responsible for maintaining the structural and functional ensemble of the catalytic and tunnel-forming residues, which are essential for enzyme activity. The missense mutation of Glu-480 to Gly introduces a loss of side chain hydrogen bond interactions with key residues Arg-360 and Arg-364, which are responsible for the tunnel topology, resulting in displacement of the substrate from an ideal position for catalysis through a localized conformational change of the active site. There is a high degree of relatedness among several gram-positive bacterial hyaluronidases; the loss of enzymatic activity of HysA1 in the S. aureus UAMS-1 strain is most likely caused by the mutation identified in our study. The role of hyaluronidase in staphylococcal infection and the redundancy of this gene are yet to be determined.
Details
- Language :
- English
- ISSN :
- 1480-3275
- Database :
- MEDLINE
- Journal :
- Canadian journal of microbiology
- Publication Type :
- Academic Journal
- Accession number :
- 34520677
- Full Text :
- https://doi.org/10.1139/cjm-2021-0110