Back to Search Start Over

Type 2 diabetes mellitus potentiates acute acrylonitrile toxicity: Potentiation reduction by phenethyl isothiocyanate.

Authors :
Zhou J
Zhu X
Dong Y
Yang B
Lu R
Xing G
Wang S
Li F
Source :
Toxicology and industrial health [Toxicol Ind Health] 2021 Nov; Vol. 37 (11), pp. 695-704. Date of Electronic Publication: 2021 Oct 13.
Publication Year :
2021

Abstract

Acrylonitrile (AN) is a known animal carcinogen and suspected human carcinogen. Recently, occupational exposure to AN has considerably increased. Previously, we demonstrated that streptozotocin-induced diabetes potentiates AN-induced acute toxicity in rats and that the induced cytochrome P450 2E1 (CYP2E1) is responsible for this effect. In the present study, we examined whether induction of CYP2E1 is also the underlying mechanism for the potentiation of AN-induced acute toxicity in type 2 diabetes in db/db mice. The effect of phenethyl isothiocyanate (PEITC) in reducing potentiation was also investigated. The mice were randomly divided into the normal control, diabetic control, AN, diabetes + AN, PEITC + AN, and diabetes + PEITC + AN groups. PEITC (40 mg/kg) was orally administered to rats for 3 days, and 1 h after the last PEITC gavage, 45 mg/kg AN was intraperitoneally injected. Time to death was observed. The CYP2E1 level and enzymatic activity, cytochrome c oxidase (CCO) activity, and reactive oxygen species (ROS) levels were measured. The survival rate was decreased in AN-treated db/db mice compared with that in AN-treated wild-type mice. The hepatic CYP2E1 level and enzymatic activity remained unaltered in db/db mice. Phenethyl isothiocyanate alleviated AN-induced acute toxicity in db/db mice as evident in the increased survival rate, restored CCO activity, and decreased ROS level in both the liver and brain. The study results suggested that CYP2E1 may not be responsible for the sensitivity to AN-induced acute toxicity in db/db mice and that PEITC reduced the potentiation of AN-induced acute toxicity in db/db mice.

Details

Language :
English
ISSN :
1477-0393
Volume :
37
Issue :
11
Database :
MEDLINE
Journal :
Toxicology and industrial health
Publication Type :
Academic Journal
Accession number :
34643460
Full Text :
https://doi.org/10.1177/07482337211048583