Back to Search
Start Over
Thrombogenicity of biomaterials depends on hemodynamic shear rate.
- Source :
-
Artificial organs [Artif Organs] 2022 Apr; Vol. 46 (4), pp. 606-617. Date of Electronic Publication: 2021 Nov 12. - Publication Year :
- 2022
-
Abstract
- Background: While it is well recognized that different biomaterials induce thrombosis at low shear rates, the effect of high shear rates may be quite different. We hypothesize that the amount of thrombus formation on a given material can be greatly influenced by the local shear rate.<br />Methods: We tested this hypothesis with two different whole blood perfusion loop assays to quantify biomaterial thrombogenicity as a function of shear stress. One assay uses obstructive posts (pins) of material positioned centrally in a tube perfused at high shear rate of >5000/s for 24 h. A second assay uses a parallel plate chamber to perfuse low (<150/s), medium (~500/s), and high shear rates over 96 h. We evaluated the thrombogenicity of seven different biomaterials including stainless steel, acrylic, ceramic, Dacron, polytetrafluoroethylene (PTFE), silicone, and polyvinyl chloride (PVC).<br />Results: For the pin assay, thrombus mass was significantly greater for stainless steel than either zirconia ceramic or acrylic (p < 0.001). Similarly, the parallel plate chamber at high shear showed that steel and PTFE (p < 0.02) occluded the chamber faster than acrylic. In contrast, a low shear parallel plate chamber revealed that stainless steel and PTFE were least thrombogenic, while silicone, Dacron, and other plastics such as acrylic were most thrombogenic. Histology revealed that high shear thrombi had a large proportion of platelets not seen in the low shear fibrin-rich thrombi.<br />Conclusion: This differential thrombogenicity based on shear rate conditions may be important in the selection of biomaterials for blood-contacting devices.<br /> (© 2021 International Center for Artificial Organs and Transplantation and Wiley Periodicals LLC.)
Details
- Language :
- English
- ISSN :
- 1525-1594
- Volume :
- 46
- Issue :
- 4
- Database :
- MEDLINE
- Journal :
- Artificial organs
- Publication Type :
- Academic Journal
- Accession number :
- 34706116
- Full Text :
- https://doi.org/10.1111/aor.14093