Back to Search Start Over

General deep learning model for detecting diabetic retinopathy.

Authors :
Chen PN
Lee CC
Liang CM
Pao SI
Huang KH
Lin KF
Source :
BMC bioinformatics [BMC Bioinformatics] 2021 Nov 08; Vol. 22 (Suppl 5), pp. 84. Date of Electronic Publication: 2021 Nov 08.
Publication Year :
2021

Abstract

Background: Doctors can detect symptoms of diabetic retinopathy (DR) early by using retinal ophthalmoscopy, and they can improve diagnostic efficiency with the assistance of deep learning to select treatments and support personnel workflow. Conventionally, most deep learning methods for DR diagnosis categorize retinal ophthalmoscopy images into training and validation data sets according to the 80/20 rule, and they use the synthetic minority oversampling technique (SMOTE) in data processing (e.g., rotating, scaling, and translating training images) to increase the number of training samples. Oversampling training may lead to overfitting of the training model. Therefore, untrained or unverified images can yield erroneous predictions. Although the accuracy of prediction results is 90%-99%, this overfitting of training data may distort training module variables.<br />Results: This study uses a 2-stage training method to solve the overfitting problem. In the training phase, to build the model, the Learning module 1 used to identify the DR and no-DR. The Learning module 2 on SMOTE synthetic datasets to identify the mild-NPDR, moderate NPDR, severe NPDR and proliferative DR classification. These two modules also used early stopping and data dividing methods to reduce overfitting by oversampling. In the test phase, we use the DIARETDB0, DIARETDB1, eOphtha, MESSIDOR, and DRIVE datasets to evaluate the performance of the training network. The prediction accuracy achieved to 85.38%, 84.27%, 85.75%, 86.73%, and 92.5%.<br />Conclusions: Based on the experiment, a general deep learning model for detecting DR was developed, and it could be used with all DR databases. We provided a simple method of addressing the imbalance of DR databases, and this method can be used with other medical images.<br /> (© 2021. The Author(s).)

Details

Language :
English
ISSN :
1471-2105
Volume :
22
Issue :
Suppl 5
Database :
MEDLINE
Journal :
BMC bioinformatics
Publication Type :
Academic Journal
Accession number :
34749634
Full Text :
https://doi.org/10.1186/s12859-021-04005-x