Back to Search Start Over

Ab Initio Quasiclassical Simulation of Femtosecond Time-Resolved Two-Dimensional Electronic Spectra of Pyrazine.

Authors :
Huang X
Xie W
Došlić N
Gelin MF
Domcke W
Source :
The journal of physical chemistry letters [J Phys Chem Lett] 2021 Dec 09; Vol. 12 (48), pp. 11736-11744. Date of Electronic Publication: 2021 Dec 01.
Publication Year :
2021

Abstract

Two-dimensional (2D) electronic spectroscopy is a powerful nonlinear technique which provides spectroscopic information on two frequency axes as well as dynamical information as a function of the so-called waiting time. Herein, an ab initio theoretical framework for the simulation of electronic 2D spectra has been developed. The method is based on the classical approximation to the doorway-window representation of three-pulse photon-echo signals and the description of nuclear motion by classical trajectories. Nonadiabatic effects are taken into account by a trajectory surface-hopping algorithm. 2D electronic spectra were simulated with ab initio on-the-fly trajectory calculations using the ADC(2) electronic-structure method for the pyrazine molecule, which is a benchmark system for ultrafast radiationless decay through conical intersections. It is demonstrated that 2D spectroscopy with subfemtosecond UV pulses can provide unprecedented detailed information on the ultrafast photodynamics of polyatomic molecules.

Details

Language :
English
ISSN :
1948-7185
Volume :
12
Issue :
48
Database :
MEDLINE
Journal :
The journal of physical chemistry letters
Publication Type :
Academic Journal
Accession number :
34851116
Full Text :
https://doi.org/10.1021/acs.jpclett.1c03589