Back to Search Start Over

Recombinant Human HPS Protects Mice and Nonhuman Primates from Acute Liver Injury.

Authors :
Yang Y
Zhai H
Wan Y
Wang X
Chen H
Dong L
Liu T
Dou G
Wu C
Yu M
Source :
International journal of molecular sciences [Int J Mol Sci] 2021 Nov 28; Vol. 22 (23). Date of Electronic Publication: 2021 Nov 28.
Publication Year :
2021

Abstract

Acute liver injury shares a common feature of hepatocytes death, immune system disorders, and cellular stress. Hepassocin (HPS) is a hepatokine that has ability to promote hepatocytes proliferation and to protect rats from D-galactose (D-Gal)- or carbon tetrachloride (CCl <subscript>4</subscript> )-induced liver injury by stimulating hepatocytes proliferation and preventing the high mortality rate, hepatocyte death, and hepatic inflammation. In this paper, we generated a pharmaceutical-grade recombinant human HPS using mammalian cells expression system and evaluated the effects of HPS administration on the pathogenesis of acute liver injury in monkey and mice. In the model mice of D-galactosamine (D-GalN) plus lipopolysaccharide (LPS)-induced liver injury, HPS treatment significantly reduced hepatocyte death and inflammation response, and consequently attenuated the development of acute liver failure. In the model monkey of D-GalN-induced liver injury, HPS administration promoted hepatocytes proliferation, prevented hepatocyte apoptosis and oxidation stress, and resulted in amelioration of liver injury. Furthermore, the primary pharmacokinetic study showed natural HPS possesses favorable pharmacokinetics; the acute toxicity study indicated no significant changes in behavioral, clinical, or histopathological parameters of HPS-treated mice, implying the clinical potential of HPS. Our results suggest that exogenous HPS has protective effects on acute liver injury in both mice and monkeys. HPS or HPS analogues and mimetics may provide novel drugs for the treatment of acute liver injury.

Details

Language :
English
ISSN :
1422-0067
Volume :
22
Issue :
23
Database :
MEDLINE
Journal :
International journal of molecular sciences
Publication Type :
Academic Journal
Accession number :
34884691
Full Text :
https://doi.org/10.3390/ijms222312886