Back to Search
Start Over
Patient-Specific Anisotropic Volume of Tissue Activated with the Lead-DBS Toolbox.
- Source :
-
Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference [Annu Int Conf IEEE Eng Med Biol Soc] 2021 Nov; Vol. 2021, pp. 6285-6288. - Publication Year :
- 2021
-
Abstract
- Deep brain stimulation is an effective neurosurgical intervention for movement disorders such as Parkinson's disease. Despite its success, the underlying mechanisms are still debated. One tool to better understand them is the Volume of Tissue Activated (VTA), that estimates the region activated by electrical stimulation. Different estimation approaches exist, these typically assume isotropic tissue properties and modelling of anisotropy is often lacking.The present work was aimed at developing and testing a method for patient-specific VTA estimation that incorporated an anisotropic conduction model. Our method was implemented within the open-source toolbox Lead-DBS and is accessible to the public.The present method was further tested with two patient cases and compared to a standard Lead-DBS pipeline for VTA estimation. This showed encouraging similarities in one test scenario and expected differences in another test scenario. Further validation with a wider cohort is warranted.
Details
- Language :
- English
- ISSN :
- 2694-0604
- Volume :
- 2021
- Database :
- MEDLINE
- Journal :
- Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
- Publication Type :
- Academic Journal
- Accession number :
- 34892550
- Full Text :
- https://doi.org/10.1109/EMBC46164.2021.9629810