Back to Search Start Over

Electrostatics Drive Oligomerization and Aggregation of Human Interferon Alpha-2a.

Authors :
Pohl C
Polimeni M
Indrakumar S
Streicher W
Peters GHJ
Nørgaard A
Lund M
Harris P
Source :
The journal of physical chemistry. B [J Phys Chem B] 2021 Dec 23; Vol. 125 (50), pp. 13657-13669. Date of Electronic Publication: 2021 Dec 13.
Publication Year :
2021

Abstract

Aggregation is a common phenomenon in the field of protein therapeutics and can lead to function loss or immunogenic patient responses. Two strategies are currently used to reduce aggregation: (1) finding a suitable formulation, which is labor-intensive and requires large protein quantities, or (2) engineering the protein, which requires extensive knowledge about the protein aggregation pathway. We present a biophysical characterization of the oligomerization and aggregation processes by Interferon alpha-2a (IFNα-2a), a protein drug with antiviral and immunomodulatory properties. This study combines experimental high throughput screening with detailed investigations by small-angle X-ray scattering and analytical ultracentrifugation. Metropolis Monte Carlo simulations are used to gain insight into the underlying intermolecular interactions. IFNα-2a forms soluble oligomers that are controlled by a fast pH and concentration-dependent equilibrium. Close to the isoelectric point of 6, IFNα-2a forms insoluble aggregates which can be prevented by adding salt. We show that monomer attraction is driven mainly by molecular anisotropic dipole-dipole interactions that increase with increasing pH. Repulsion is due to monopole-monopole interactions and depends on the charge of IFNα-2a. The study highlights how combining multiple methods helps to systematically dissect the molecular mechanisms driving oligomer formation and to design ultimately efficient strategies for preventing detrimental protein aggregation.

Details

Language :
English
ISSN :
1520-5207
Volume :
125
Issue :
50
Database :
MEDLINE
Journal :
The journal of physical chemistry. B
Publication Type :
Academic Journal
Accession number :
34898211
Full Text :
https://doi.org/10.1021/acs.jpcb.1c07090