Back to Search Start Over

Mitochondrial dysfunction and oxidative stress are involved in the mechanism of tramadol-induced renal injury.

Authors :
Mousavi K
Manthari RK
Najibi A
Jia Z
Ommati MM
Heidari R
Source :
Current research in pharmacology and drug discovery [Curr Res Pharmacol Drug Discov] 2021 Sep 03; Vol. 2, pp. 100049. Date of Electronic Publication: 2021 Sep 03 (Print Publication: 2021).
Publication Year :
2021

Abstract

Tramadol (TMDL) is an opioid analgesic widely administered for the management of moderate to severe pain. On the other hand, TMDL is commonly abused in many countries because of its availability and cheap cost. Renal injury is related to high dose or chronic administration of TMDL. No precise mechanism for TMDL-induced renal damage has been identified so far. The current study aimed to evaluate the potential role of oxidative stress and mitochondrial impairment in the pathogenesis of TMDL-induced renal injury. For this purpose, rats were treated with TMDL (40 and 80 ​mg/kg, i.p, 28 consecutive days). A significant increase in serum Cr and BUN was detected in TMDL groups. On the other hand, TMDL (80 ​mg/kg) caused a substantial increase in urine glucose, ALP, protein, and γ-GT levels. Moreover, urine Cr was significantly decreased in TMDL-treated rats (40 and 80 ​mg/kg). Renal histopathological alterations included inflammation, necrosis, and tubular degeneration in the kidney of TMDL-treated animals. Reactive oxygen species (ROS) formation, increased oxidized glutathione (GSSG), lipid peroxidation, and protein carbonylation was increased, whereas total antioxidant capacity and reduced glutathione levels were considerably decreased in TMDL groups. Significant mitochondrial impairment was also detected in the form of mitochondrial depolarization, adenosine-tri-phosphate (ATP) depletion, mitochondrial permeabilization, lipid peroxidation, and decreased mitochondrial dehydrogenase activity in the kidney of TMDL (80 ​mg/kg)-treated animals. These data suggest mitochondrial impairment and oxidative stress as mechanisms involved in the pathogenesis of TMDL-induced renal injury.<br />Competing Interests: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (© 2021 The Authors.)

Details

Language :
English
ISSN :
2590-2571
Volume :
2
Database :
MEDLINE
Journal :
Current research in pharmacology and drug discovery
Publication Type :
Academic Journal
Accession number :
34909675
Full Text :
https://doi.org/10.1016/j.crphar.2021.100049