Back to Search Start Over

Postoperative delirium prediction using machine learning models and preoperative electronic health record data.

Authors :
Bishara A
Chiu C
Whitlock EL
Douglas VC
Lee S
Butte AJ
Leung JM
Donovan AL
Source :
BMC anesthesiology [BMC Anesthesiol] 2022 Jan 03; Vol. 22 (1), pp. 8. Date of Electronic Publication: 2022 Jan 03.
Publication Year :
2022

Abstract

Background: Accurate, pragmatic risk stratification for postoperative delirium (POD) is necessary to target preventative resources toward high-risk patients. Machine learning (ML) offers a novel approach to leveraging electronic health record (EHR) data for POD prediction. We sought to develop and internally validate a ML-derived POD risk prediction model using preoperative risk features, and to compare its performance to models developed with traditional logistic regression.<br />Methods: This was a retrospective analysis of preoperative EHR data from 24,885 adults undergoing a procedure requiring anesthesia care, recovering in the main post-anesthesia care unit, and staying in the hospital at least overnight between December 2016 and December 2019 at either of two hospitals in a tertiary care health system. One hundred fifteen preoperative risk features including demographics, comorbidities, nursing assessments, surgery type, and other preoperative EHR data were used to predict postoperative delirium (POD), defined as any instance of Nursing Delirium Screening Scale ≥2 or positive Confusion Assessment Method for the Intensive Care Unit within the first 7 postoperative days. Two ML models (Neural Network and XGBoost), two traditional logistic regression models ("clinician-guided" and "ML hybrid"), and a previously described delirium risk stratification tool (AWOL-S) were evaluated using the area under the receiver operating characteristic curve (AUC-ROC), sensitivity, specificity, positive likelihood ratio, and positive predictive value. Model calibration was assessed with a calibration curve. Patients with no POD assessments charted or at least 20% of input variables missing were excluded.<br />Results: POD incidence was 5.3%. The AUC-ROC for Neural Net was 0.841 [95% CI 0. 816-0.863] and for XGBoost was 0.851 [95% CI 0.827-0.874], which was significantly better than the clinician-guided (AUC-ROC 0.763 [0.734-0.793], p < 0.001) and ML hybrid (AUC-ROC 0.824 [0.800-0.849], p < 0.001) regression models and AWOL-S (AUC-ROC 0.762 [95% CI 0.713-0.812], p < 0.001). Neural Net, XGBoost, and ML hybrid models demonstrated excellent calibration, while calibration of the clinician-guided and AWOL-S models was moderate; they tended to overestimate delirium risk in those already at highest risk.<br />Conclusion: Using pragmatically collected EHR data, two ML models predicted POD in a broad perioperative population with high discrimination. Optimal application of the models would provide automated, real-time delirium risk stratification to improve perioperative management of surgical patients at risk for POD.<br /> (© 2021. The Author(s).)

Details

Language :
English
ISSN :
1471-2253
Volume :
22
Issue :
1
Database :
MEDLINE
Journal :
BMC anesthesiology
Publication Type :
Academic Journal
Accession number :
34979919
Full Text :
https://doi.org/10.1186/s12871-021-01543-y