Back to Search
Start Over
Integrated analysis of circulating immune cellular and soluble mediators reveals specific COVID19 signatures at hospital admission with utility for prediction of clinical outcomes.
- Source :
-
Theranostics [Theranostics] 2022 Jan 01; Vol. 12 (1), pp. 290-306. Date of Electronic Publication: 2022 Jan 01 (Print Publication: 2022). - Publication Year :
- 2022
-
Abstract
- Coronavirus disease 2019 (COVID19), caused by SARS-CoV-2, is a complex disease, with a variety of clinical manifestations ranging from asymptomatic infection or mild cold-like symptoms to more severe cases requiring hospitalization and critical care. The most severe presentations seem to be related with a delayed, deregulated immune response leading to exacerbated inflammation and organ damage with close similarities to sepsis. Methods: In order to improve the understanding on the relation between host immune response and disease course, we have studied the differences in the cellular (monocytes, CD8+ T and NK cells) and soluble (cytokines, chemokines and immunoregulatory ligands) immune response in blood between Healthy Donors (HD), COVID19 and a group of patients with non-COVID19 respiratory tract infections (NON-COV-RTI). In addition, the immune response profile has been analyzed in COVID19 patients according to disease severity. Results: In comparison to HDs and patients with NON-COV-RTI, COVID19 patients show a heterogeneous immune response with the presence of both activated and exhausted CD8+ T and NK cells characterised by the expression of the immune checkpoint LAG3 and the presence of the adaptive NK cell subset. An increased frequency of adaptive NK cells and a reduction of NK cells expressing the activating receptors NKp30 and NKp46 correlated with disease severity. Although both activated and exhausted NK cells expressing LAG3 were increased in moderate/severe cases, unsupervised cell clustering analyses revealed a more complex scenario with single NK cells expressing more than one immune checkpoint (PD1, TIM3 and/or LAG3). A general increased level of inflammatory cytokines and chemokines was found in COVID19 patients, some of which like IL18, IL1RA, IL36B and IL31, IL2, IFNα and TNFα, CXCL10, CCL2 and CCL8 were able to differentiate between COVID19 and NON-COV-RTI and correlated with bad prognosis (IL2, TNFα, IL1RA, CCL2, CXCL10 and CXCL9). Notably, we found that soluble NKG2D ligands from the MIC and ULBPs families were increased in COVID19 compared to NON-COV-RTI and correlated with disease severity. Conclusions: Our results provide a detailed comprehensive analysis of the presence of activated and exhausted CD8+T, NK and monocyte cell subsets as well as extracellular inflammatory factors beyond cytokines/chemokines, specifically associated to COVID19. Importantly, multivariate analysis including clinical, demographical and immunological experimental variables have allowed us to reveal specific immune signatures to i) differentiate COVID19 from other infections and ii) predict disease severity and the risk of death.<br />Competing Interests: Competing Interests: The authors have declared that no competing interest exists.<br /> (© The author(s).)
- Subjects :
- Adult
Aged
Aged, 80 and over
Biomarkers blood
CD8-Positive T-Lymphocytes virology
COVID-19 mortality
Case-Control Studies
Chemokines blood
Cytokines blood
Female
Hospitalization
Humans
Killer Cells, Natural virology
Logistic Models
Male
Middle Aged
Monocytes virology
Prospective Studies
Respiratory Tract Infections blood
Respiratory Tract Infections immunology
Severity of Illness Index
COVID-19 blood
COVID-19 immunology
Subjects
Details
- Language :
- English
- ISSN :
- 1838-7640
- Volume :
- 12
- Issue :
- 1
- Database :
- MEDLINE
- Journal :
- Theranostics
- Publication Type :
- Academic Journal
- Accession number :
- 34987646
- Full Text :
- https://doi.org/10.7150/thno.63463