Back to Search
Start Over
The Remarkable Evolutionary Plasticity of Coronaviruses by Mutation and Recombination: Insights for the COVID-19 Pandemic and the Future Evolutionary Paths of SARS-CoV-2.
- Source :
-
Viruses [Viruses] 2022 Jan 02; Vol. 14 (1). Date of Electronic Publication: 2022 Jan 02. - Publication Year :
- 2022
-
Abstract
- Coronaviruses (CoVs) constitute a large and diverse subfamily of positive-sense single-stranded RNA viruses. They are found in many mammals and birds and have great importance for the health of humans and farm animals. The current SARS-CoV-2 pandemic, as well as many previous epidemics in humans that were of zoonotic origin, highlights the importance of studying the evolution of the entire CoV subfamily in order to understand how novel strains emerge and which molecular processes affect their adaptation, transmissibility, host/tissue tropism, and patho non-homologous genicity. In this review, we focus on studies over the last two years that reveal the impact of point mutations, insertions/deletions, and intratypic/intertypic homologous and non-homologous recombination events on the evolution of CoVs. We discuss whether the next generations of CoV vaccines should be directed against other CoV proteins in addition to or instead of spike. Based on the observed patterns of molecular evolution for the entire subfamily, we discuss five scenarios for the future evolutionary path of SARS-CoV-2 and the COVID-19 pandemic. Finally, within this evolutionary context, we discuss the recently emerged Omicron (B.1.1.529) VoC.
- Subjects :
- Animals
Antiviral Agents pharmacology
COVID-19 prevention & control
Coronavirus classification
Coronavirus genetics
Coronavirus immunology
Drug Design
Genome, Viral genetics
Humans
Mutation
Recombination, Genetic
SARS-CoV-2 classification
SARS-CoV-2 drug effects
SARS-CoV-2 immunology
Vaccination
Viral Vaccines immunology
COVID-19 Drug Treatment
COVID-19 epidemiology
COVID-19 virology
Evolution, Molecular
SARS-CoV-2 genetics
Subjects
Details
- Language :
- English
- ISSN :
- 1999-4915
- Volume :
- 14
- Issue :
- 1
- Database :
- MEDLINE
- Journal :
- Viruses
- Publication Type :
- Academic Journal
- Accession number :
- 35062282
- Full Text :
- https://doi.org/10.3390/v14010078