Back to Search Start Over

CFTR interactome mapping using the mammalian membrane two-hybrid high-throughput screening system.

Authors :
Lim SH
Snider J
Birimberg-Schwartz L
Ip W
Serralha JC
Botelho HM
Lopes-Pacheco M
Pinto MC
Moutaoufik MT
Zilocchi M
Laselva O
Esmaeili M
Kotlyar M
Lyakisheva A
Tang P
López Vázquez L
Akula I
Aboualizadeh F
Wong V
Grozavu I
Opacak-Bernardi T
Yao Z
Mendoza M
Babu M
Jurisica I
Gonska T
Bear CE
Amaral MD
Stagljar I
Source :
Molecular systems biology [Mol Syst Biol] 2022 Feb; Vol. 18 (2), pp. e10629.
Publication Year :
2022

Abstract

Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) is a chloride and bicarbonate channel in secretory epithelia with a critical role in maintaining fluid homeostasis. Mutations in CFTR are associated with Cystic Fibrosis (CF), the most common lethal autosomal recessive disorder in Caucasians. While remarkable treatment advances have been made recently in the form of modulator drugs directly rescuing CFTR dysfunction, there is still considerable scope for improvement of therapeutic effectiveness. Here, we report the application of a high-throughput screening variant of the Mammalian Membrane Two-Hybrid (MaMTH-HTS) to map the protein-protein interactions of wild-type (wt) and mutant CFTR (F508del), in an effort to better understand CF cellular effects and identify new drug targets for patient-specific treatments. Combined with functional validation in multiple disease models, we have uncovered candidate proteins with potential roles in CFTR function/CF pathophysiology, including Fibrinogen Like 2 (FGL2), which we demonstrate in patient-derived intestinal organoids has a significant effect on CFTR functional expression.<br /> (© 2022 The Authors. Published under the terms of the CC BY 4.0 license.)

Details

Language :
English
ISSN :
1744-4292
Volume :
18
Issue :
2
Database :
MEDLINE
Journal :
Molecular systems biology
Publication Type :
Academic Journal
Accession number :
35156780
Full Text :
https://doi.org/10.15252/msb.202110629