Back to Search Start Over

Unravelling the Helianthus tuberosus L. (Jerusalem Artichoke, Kiku-Imo) Tuber Proteome by Label-Free Quantitative Proteomics.

Authors :
Bakku RK
Gupta R
Min CW
Kim ST
Takahashi G
Shibato J
Shioda S
Takenoya F
Agrawal GK
Rakwal R
Source :
Molecules (Basel, Switzerland) [Molecules] 2022 Feb 07; Vol. 27 (3). Date of Electronic Publication: 2022 Feb 07.
Publication Year :
2022

Abstract

The present research investigates the tuber proteome of the 'medicinal' plant Jerusalem artichoke (abbreviated as JA) ( Helianthus tuberosus L.) using a high-throughput proteomics technique. Although JA has been historically known to the Native Americans, it was introduced to Europe in the late 19th century and later spread to Japan (referred to as 'kiku-imo') as a folk remedy for diabetes. Genboku Takahashi research group has been working on the cultivation and utilization of kiku-imo tuber as a traditional/alternative medicine in daily life and researched on the lowering of blood sugar level, HbA1c, etc., in human subjects (unpublished data). Understanding the protein components of the tuber may shed light on its healing properties, especially related to diabetes. Using three commercially processed JA tuber products (dried powder and dried chips) we performed total protein extraction on the powdered samples using a label-free quantitate proteomic approach (mass spectrometry) and catalogued for the first time a comprehensive protein list for the JA tuber. A total of 2967 protein groups were identified, statistically analyzed, and further categorized into different protein classes using bioinformatics techniques. We discussed the association of these proteins to health and disease regulatory metabolism. Data are available via ProteomeXchange with identifier PXD030744.

Details

Language :
English
ISSN :
1420-3049
Volume :
27
Issue :
3
Database :
MEDLINE
Journal :
Molecules (Basel, Switzerland)
Publication Type :
Academic Journal
Accession number :
35164374
Full Text :
https://doi.org/10.3390/molecules27031111