Back to Search Start Over

Thinking out loud, an open-access EEG-based BCI dataset for inner speech recognition.

Authors :
Nieto N
Peterson V
Rufiner HL
Kamienkowski JE
Spies R
Source :
Scientific data [Sci Data] 2022 Feb 14; Vol. 9 (1), pp. 52. Date of Electronic Publication: 2022 Feb 14.
Publication Year :
2022

Abstract

Surface electroencephalography is a standard and noninvasive way to measure electrical brain activity. Recent advances in artificial intelligence led to significant improvements in the automatic detection of brain patterns, allowing increasingly faster, more reliable and accessible Brain-Computer Interfaces. Different paradigms have been used to enable the human-machine interaction and the last few years have broad a mark increase in the interest for interpreting and characterizing the "inner voice" phenomenon. This paradigm, called inner speech, raises the possibility of executing an order just by thinking about it, allowing a "natural" way of controlling external devices. Unfortunately, the lack of publicly available electroencephalography datasets, restricts the development of new techniques for inner speech recognition. A ten-participant dataset acquired under this and two others related paradigms, recorded with an acquisition system of 136 channels, is presented. The main purpose of this work is to provide the scientific community with an open-access multiclass electroencephalography database of inner speech commands that could be used for better understanding of the related brain mechanisms.<br /> (© 2022. The Author(s).)

Details

Language :
English
ISSN :
2052-4463
Volume :
9
Issue :
1
Database :
MEDLINE
Journal :
Scientific data
Publication Type :
Academic Journal
Accession number :
35165308
Full Text :
https://doi.org/10.1038/s41597-022-01147-2