Back to Search
Start Over
Structure of the moiré exciton captured by imaging its electron and hole.
- Source :
-
Nature [Nature] 2022 Mar; Vol. 603 (7900), pp. 247-252. Date of Electronic Publication: 2022 Mar 09. - Publication Year :
- 2022
-
Abstract
- Interlayer excitons (ILXs) - electron-hole pairs bound across two atomically thin layered semiconductors - have emerged as attractive platforms to study exciton condensation <superscript>1-4</superscript> , single-photon emission and other quantum information applications <superscript>5-7</superscript> . Yet, despite extensive optical spectroscopic investigations <superscript>8-12</superscript> , critical information about their size, valley configuration and the influence of the moiré potential remains unknown. Here, in a WSe <subscript>2</subscript> /MoS <subscript>2</subscript> heterostructure, we captured images of the time-resolved and momentum-resolved distribution of both of the particles that bind to form the ILX: the electron and the hole. We thereby obtain a direct measurement of both the ILX diameter of around 5.2 nm, comparable with the moiré-unit-cell length of 6.1 nm, and the localization of its centre of mass. Surprisingly, this large ILX is found pinned to a region of only 1.8 nm diameter within the moiré cell, smaller than the size of the exciton itself. This high degree of localization of the ILX is backed by Bethe-Salpeter equation calculations and demonstrates that the ILX can be localized within small moiré unit cells. Unlike large moiré cells, these are uniform over large regions, allowing the formation of extended arrays of localized excitations for quantum technology.<br /> (© 2022. The Author(s), under exclusive licence to Springer Nature Limited.)
Details
- Language :
- English
- ISSN :
- 1476-4687
- Volume :
- 603
- Issue :
- 7900
- Database :
- MEDLINE
- Journal :
- Nature
- Publication Type :
- Academic Journal
- Accession number :
- 35264760
- Full Text :
- https://doi.org/10.1038/s41586-021-04360-y