Back to Search Start Over

Fatal Neurodissemination and SARS-CoV-2 Tropism in K18-hACE2 Mice Is Only Partially Dependent on hACE2 Expression.

Authors :
Carossino M
Kenney D
O'Connell AK
Montanaro P
Tseng AE
Gertje HP
Grosz KA
Ericsson M
Huber BR
Kurnick SA
Subramaniam S
Kirkland TA
Walker JR
Francis KP
Klose AD
Paragas N
Bosmann M
Saeed M
Balasuriya UBR
Douam F
Crossland NA
Source :
Viruses [Viruses] 2022 Mar 05; Vol. 14 (3). Date of Electronic Publication: 2022 Mar 05.
Publication Year :
2022

Abstract

Animal models recapitulating COVID-19 are critical to enhance our understanding of SARS-CoV-2 pathogenesis. Intranasally inoculated transgenic mice expressing human angiotensin-converting enzyme 2 under the cytokeratin 18 promoter (K18-hACE2) represent a lethal model of SARS-CoV-2 infection. We evaluated the clinical and virological dynamics of SARS-CoV-2 using two intranasal doses (10 <superscript>4</superscript> and 10 <superscript>6</superscript> PFUs), with a detailed spatiotemporal pathologic analysis of the 10 <superscript>6</superscript> dose cohort. Despite generally mild-to-moderate pneumonia, clinical decline resulting in euthanasia or death was commonly associated with hypothermia and viral neurodissemination independent of inoculation dose. Neuroinvasion was first observed at 4 days post-infection, initially restricted to the olfactory bulb suggesting axonal transport via the olfactory neuroepithelium as the earliest portal of entry. Absence of viremia suggests neuroinvasion occurs independently of transport across the blood-brain barrier. SARS-CoV-2 tropism was neither restricted to ACE2-expressing cells (e.g., AT1 pneumocytes), nor inclusive of some ACE2-positive cell lineages (e.g., bronchiolar epithelium and brain vasculature). Absence of detectable ACE2 protein expression in neurons but overexpression in neuroepithelium suggest this as the most likely portal of neuroinvasion, with subsequent ACE2 independent lethal neurodissemination. A paucity of epidemiological data and contradicting evidence for neuroinvasion and neurodissemination in humans call into question the translational relevance of this model.

Details

Language :
English
ISSN :
1999-4915
Volume :
14
Issue :
3
Database :
MEDLINE
Journal :
Viruses
Publication Type :
Academic Journal
Accession number :
35336942
Full Text :
https://doi.org/10.3390/v14030535