Back to Search Start Over

A Novel N-Arylpyridone Compound Alleviates the Inflammatory and Fibrotic Reaction of Silicosis by Inhibiting the ASK1-p38 Pathway and Regulating Macrophage Polarization.

Authors :
Fan M
Xiao H
Song D
Zhu L
Zhang J
Zhang X
Wang J
Dai H
Wang C
Source :
Frontiers in pharmacology [Front Pharmacol] 2022 Mar 23; Vol. 13, pp. 848435. Date of Electronic Publication: 2022 Mar 23 (Print Publication: 2022).
Publication Year :
2022

Abstract

Silicosis is one of the potentially fatal occupational diseases characterized by respiratory dysfunction, chronic interstitial inflammation, and fibrosis, for which treatment options are limited. Previous studies showed that a novel N-arylpyridone compound named AKEX0011 exhibited anti-inflammatory and anti-fibrotic effects in bleomycin-induced pulmonary fibrosis; however, it is unknown whether it could also be effective against silicosis. Therefore, we sought to investigate the preventive and therapeutic roles of AKEX0011 in a silicosis rodent model and in a silica-stimulated macrophage cell line. In vivo , our results showed that AKEX0011 ameliorated silica-induced imaging lung damages, respiratory dysfunction, reduced the secretion of inflammatory and fibrotic factors (TNF-α, IL-1β, IL-6, TGF-β, IL-4, and IL-10), and the deposition of fibrosis-related proteins (collagen I, fibronectin, and α-SMA), regardless of early or advanced therapy. Specifically, we found that AKEX0011 attenuated silicosis by inhibiting apoptosis, blocking the ASK1-p38 MAPK signaling pathway, and regulating polarization of macrophages. In vitro , AKEX0011 inhibited macrophages from secreting inflammatory cytokines and inhibited apoptosis of macrophages in pre-treated and post-treated models, concurrent with blocking the ASK1-p38 pathway and inhibiting M1 polarization. Collectively, AKEX0011, as a novel N-arylpyridone compound, exerted protective effects for silica-induced pulmonary inflammation and fibrosis both in vivo and in vitro , and hence, it could be a strong drug candidate for the treatment of silicosis.<br />Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.<br /> (Copyright © 2022 Fan, Xiao, Song, Zhu, Zhang, Zhang, Wang, Dai and Wang.)

Details

Language :
English
ISSN :
1663-9812
Volume :
13
Database :
MEDLINE
Journal :
Frontiers in pharmacology
Publication Type :
Academic Journal
Accession number :
35401236
Full Text :
https://doi.org/10.3389/fphar.2022.848435