Back to Search
Start Over
Increasing angular sampling through deep learning for stationary cardiac SPECT image reconstruction.
- Source :
-
Journal of nuclear cardiology : official publication of the American Society of Nuclear Cardiology [J Nucl Cardiol] 2023 Feb; Vol. 30 (1), pp. 86-100. Date of Electronic Publication: 2022 May 04. - Publication Year :
- 2023
-
Abstract
- Background: The GE Discovery NM (DNM) 530c/570c are dedicated cardiac SPECT scanners with 19 detector modules designed for stationary imaging. This study aims to incorporate additional projection angular sampling to improve reconstruction quality. A deep learning method is also proposed to generate synthetic dense-view image volumes from few-view counterparts.<br />Methods: By moving the detector array, a total of four projection angle sets were acquired and combined for image reconstructions. A deep neural network is proposed to generate synthetic four-angle images with 76 ([Formula: see text]) projections from corresponding one-angle images with 19 projections. Simulated data, pig, physical phantom, and human studies were used for network training and evaluation. Reconstruction results were quantitatively evaluated using representative image metrics. The myocardial perfusion defect size of different subjects was quantified using an FDA-cleared clinical software.<br />Results: Multi-angle reconstructions and network results have higher image resolution, improved uniformity on normal myocardium, more accurate defect quantification, and superior quantitative values on all the testing data. As validated against cardiac catheterization and diagnostic results, deep learning results showed improved image quality with better defect contrast on human studies.<br />Conclusion: Increasing angular sampling can substantially improve image quality on DNM, and deep learning can be implemented to improve reconstruction quality in case of stationary imaging.<br /> (© 2022. The Author(s) under exclusive licence to American Society of Nuclear Cardiology.)
Details
- Language :
- English
- ISSN :
- 1532-6551
- Volume :
- 30
- Issue :
- 1
- Database :
- MEDLINE
- Journal :
- Journal of nuclear cardiology : official publication of the American Society of Nuclear Cardiology
- Publication Type :
- Academic Journal
- Accession number :
- 35508796
- Full Text :
- https://doi.org/10.1007/s12350-022-02972-z