Back to Search Start Over

Microbial production of multienzyme preparation from mosambi peel using Trichoderma asperellum.

Authors :
Singh B
Garg N
Mathur P
Soni SK
Vaish S
Kumar S
Source :
Archives of microbiology [Arch Microbiol] 2022 May 11; Vol. 204 (6), pp. 313. Date of Electronic Publication: 2022 May 11.
Publication Year :
2022

Abstract

Fruit and vegetable wastes create unhygienic conditions and pose a environmental pollution. The utilization of such wastes as carbon sources for production of enzyme with microbial intervention could be an ecofriendly and profitable approach, apart from diminishing the waste load. The present investigation focused on the feasibility of using mosambi (Citrus limetta) peel as substrate for multienzyme production (pectinase, cellulase and amylase) through microbial intervention. Fifteen fungi were isolated from organic waste and screened in vitro their potential of biodegradation of mosambi peel through enzymes production. The best performing isolate was selected and identified as Trichoderma asperellum NG-125 (accession number-MW287256). Conditions viz. temperature, pH, incubation time and nutrient addition were optimized for efficient enzymes production. The maximum enzyme activity (U ml <superscript>-1</superscript>  min <superscript>-1</superscript> ) of pectinase (595.7 ± 2.47), cellulase (497.3 ± 2.06) and amylase (440.9 ± 1.44) were observed at pH 5.5, incubation temperature of 30 °C after 10 days of fermentation. Moreover, macro-nutrients such as ammonium sulfate (0.1%) and potassium-di-hydrogen-ortho-phosphate (0.01%) further also enhanced the production of enzymes. The SDS-PAGE analysis of purified pectinase, cellulase and amylase using showed molecular mass of 43, 66 and 33 kDa, respectively. The enzyme retention activity (ERA) of aforesaid enzymes was also tested with four different natural fiber matrices viz., bagasse, rice husk, paddy straw and wheat straw. Among these, the maximum ERA was observed on bagasse matrix (pectinase-56.35%, cellulose-77.68% and amylase 59.54%). Enzymatic juice clarification yield obtained with test enzyme was 75.8%, as compared to 80.5% of commercial enzyme. The result indicates that T. asperellum may be exploited as multifaceted biocatalysis.<br /> (© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)

Details

Language :
English
ISSN :
1432-072X
Volume :
204
Issue :
6
Database :
MEDLINE
Journal :
Archives of microbiology
Publication Type :
Academic Journal
Accession number :
35543769
Full Text :
https://doi.org/10.1007/s00203-022-02913-x