Back to Search
Start Over
Flash Flood Vulnerability Mapping Based on FFPI Using GIS Spatial Analysis Case Study: Valea Rea Catchment Area, Romania.
- Source :
-
Sensors (Basel, Switzerland) [Sensors (Basel)] 2022 May 07; Vol. 22 (9). Date of Electronic Publication: 2022 May 07. - Publication Year :
- 2022
-
Abstract
- The risk associated with extreme hydrological processes (flash floods, floods) is more present than ever, taking into account the global climatic changes, the expansion of inhabited areas and the changes emerging as a result of inadequate land management. Of all the hydrological risks, slope flash floods represent the processes that have the highest impact because of the high speed of their development and their place of origin, which makes them difficult to predict. This study is performed in an area susceptible to the emergence of slope flash floods, the Valea Rea catchment area, spatially located in Northwest Romania, and exposed to western circulation, which favours the development of such processes. The entire research is based on a methodology involving the integration of spatial databases, which indicate the vulnerability of the territory in the form of a weighted average equation to highlight the major impact of the most relevant factor. A number of 15 factors have been used in raster spatial databases, obtained by conversion (land use, soil type, lithology, Hydrologic Soil Group, etc.), derived from the digital elevation model (slope, aspect, TWI, etc.) or by performing spatial analysis submodels (precipitation, slope length, etc). The integration of these databases by means of the spatial analysis equation based on the weighted average led to the vulnerability of the territory to FFPI, classified on five classes from very low to very high. The final result underlines the high and very high vulnerability (43%) of the analysed territory that may have a major impact on the human communities and the territorial infrastructure. The results obtained highlight the torrential nature of the analysed catchment area, identifying several hotspots of great risk, located mainly within the built-up areas of intensely inhabited regions; a fact which involves a major risk and significant potential material damage in the territory. The model was validated by directly comparing the results obtained with locations previously affected, where the flood effects have been identified, highlighting the fact that the model may be taken into account to be applied in practice, and also to be implemented in territories that share the same features.
- Subjects :
- Geographic Information Systems
Humans
Romania
Soil
Spatial Analysis
Floods
Rivers
Subjects
Details
- Language :
- English
- ISSN :
- 1424-8220
- Volume :
- 22
- Issue :
- 9
- Database :
- MEDLINE
- Journal :
- Sensors (Basel, Switzerland)
- Publication Type :
- Academic Journal
- Accession number :
- 35591267
- Full Text :
- https://doi.org/10.3390/s22093573