Back to Search
Start Over
A dual role for CRTH2 in acute lung injury.
- Source :
-
BioRxiv : the preprint server for biology [bioRxiv] 2024 May 02. Date of Electronic Publication: 2024 May 02. - Publication Year :
- 2024
-
Abstract
- Acute respiratory distress syndrome (ARDS) is a life-threatening clinical condition defined by rapid-onset respiratory failure following acute lung injury (ALI). The high mortality rate and rising incidence of ARDS due to COVID-19 make it an important research priority. Here we sought to investigate the role of chemoattractant receptor-homologous molecule expressed on Th2 cells (CRTH2) in ARDS. CRTH2 is a G protein-coupled receptor best studied in the context of type 2 immunity, but it also exerts effects on neutrophilic inflammation. To evaluate its role in mouse models of ARDS, we first examined its expression pattern on murine neutrophils. We found it is expressed on neutrophils, but only after extravasation into the lung. Next, we showed that CRTH2 expression on extravasated lung neutrophils promotes cell survival, as genetic deletion of CRTH2 and pharmacologic inhibition of CRTH2 using fevipiprant both led to increased apoptosis in vitro. We then evaluated the role of CRTH2 in vivo using a murine model of LPS-induced ALI. In line with the pro-inflammatory effects of CRTH2 in vitro, we observed improvement of lung injury in CRTH2-deficient mice in terms of vascular leak, weight loss and survival after LPS administration. However, neutrophilic inflammation was elevated, not suppressed in the CRTH2 KO. This finding indicated a second mechanism offsetting the pro-survival effect of CRTH2 on neutrophils. Bulk RNAseq of lung tissue indicated impairments in type 2 immune signaling in the CRTH2 KO, and qPCR and ELISA confirmed downregulation of IL-4, which is known to suppress neutrophilic inflammation. Thus, CRTH2 may play a dual role in ALI, directly promoting neutrophil cell survival, but indirectly suppressing neutrophil effector function via IL-4.
Details
- Language :
- English
- Database :
- MEDLINE
- Journal :
- BioRxiv : the preprint server for biology
- Accession number :
- 35665001
- Full Text :
- https://doi.org/10.1101/2022.05.29.493897